- 集合与常用逻辑用语
- 函数与导数
- 利用给定函数模型解决实际问题
- + 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某企业需要建造一个容积为8立方米,深度为2米的无盖长方体水池,已知池壁的造价为每平方米100元,池底造价为每平方米300元,设水池底面一边长为
米,水池总造价为
元,求
关于
的函数关系式,并求出水池的最低造价.




数据显示,某
公司2018年上半年五个月的收入情况如下表所示:
根据上述数据,在建立该公司2018年月收入
(万元)与月份
的函数模型时,给出两个函数模型
与
供选择.
(1)你认为哪个函数模型较好,并简单说明理由;
(2)试用你认为较好的函数模型,分析大约从第几个月份开始,该公司的月收入会超过100万元?(参考数据
,
)

月份 | 2 | 3 | 4 | 5 | 6 |
月收入(万元) | 1.4 | 2.56 | 5.31 | 11 | 21.3 |
根据上述数据,在建立该公司2018年月收入




(1)你认为哪个函数模型较好,并简单说明理由;
(2)试用你认为较好的函数模型,分析大约从第几个月份开始,该公司的月收入会超过100万元?(参考数据


如图,将宽和长都分别为x,
的两个矩形部分重叠放在一起后形成的正十字形面积为
注:正十字形指的是原来的两个矩形的顶点都在同一个圆上,且两矩形长所在的直线互相垂直的图形
,

求y关于x的函数解析式;
当x,y取何值时,该正十字形的外接圆面积最小,并求出其最小值.






某高速公路收费站的拋物线拱顶如图所示,该拱顶的跨度
米,P为AB的中点,拱高
,
米,在建造时每隔8米需用一个支柱支撑,支柱分别为
、
、
、
,求支柱
的长度.









如图,已知一个长方形展览大厅长为20m,宽为16m,展厅入口位于其长边的中间位置,为其正中央有一个圆心为C的圆盘形展台,现欲在展厅一角B点处安装一个监控摄像头对展台与入口进行监控(如图中阴影所示),要求B与圆C在同一水平面上.

(1)若圆盘半径为2
m,求监控摄像头最小水平摄像视角的正切值;
(2)若监控摄像头最大水平摄像视角为60°,求圆盘半径的最大值.(注:水平摄像视角指镜头中心点与水平观察物体边缘的视线的夹角)

(1)若圆盘半径为2

(2)若监控摄像头最大水平摄像视角为60°,求圆盘半径的最大值.(注:水平摄像视角指镜头中心点与水平观察物体边缘的视线的夹角)
在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,且y与x之间的函数关系式用如图所示的程序框图给出.
(1)写出程序框图中①,②,③处应填充的式子.
(2)若输出的面积y值为6,则路程x的值为多少?

(1)写出程序框图中①,②,③处应填充的式子.
(2)若输出的面积y值为6,则路程x的值为多少?


某工厂在生产产品时需要用到长度为
的
型和长度为
的
型两种钢管.工厂利用长度为
的钢管原材料,裁剪成若干
型和
型钢管,假设裁剪时损耗忽略不计,裁剪后所剩废料与原材料的百分比称为废料率.
(1)要使裁剪的废料率小于
,共有几种方案剪裁?请写出每种方案中分别被裁剪
型钢管和
型钢管的根数;
(2)假设一根
型钢管和一根
型钢管能成为一套毛胚,假定只能按(1)中的那些方案裁剪,若工厂需要生产
套毛胚,则至少需要采购多少根长度为
的钢管原材料?最终的废料率为多少?







(1)要使裁剪的废料率小于



(2)假设一根




一条隧道的横断面由抛物线弧及一个矩形的三边围成,尺寸如图所示
单位:
,一辆卡车空车时能通过此隧道,现载一集装箱,箱宽3m,车与箱共高
,此车是否能通过隧道?并说明理由.




建造一间地面面积为12
的背面靠墙的猪圈, 底面为长方形的猪圈正面的造价为120元/
, 侧面的造价为80元/
, 屋顶造价为1120元. 如果墙高3
, 且不计猪圈背面的费用, 问怎样设计能使猪圈的总造价最低, 最低总造价是多少元?




我国古代某数学著作中记载了一个折竹抵地问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”意思是:有一根竹子(与地面垂直),原高二丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离为六尺,则折断处离地面的高为__________尺.