某学生在期中考试中,数学成绩较好,英语成绩较差,为了在后半学期的月考和期末这两次考试中提高英语成绩,他决定重点加强英语学习,结果两次考试中英语成绩每次都比上次提高了10%,但数学成绩每次都比上次降低了10%,期末时这两科分值恰好均为m分,则这名学生这两科的期末总成绩和期中比,结果(   )
A.提高了B.降低了
C.不提不降(相同)D.是否提高与m值有关系
当前题号:1 | 题型:单选题 | 难度:0.99
贵阳与凯里两地相距约200千米,一辆货车从贵阳匀速行驶到凯里,规定速度不得超过100千米时,已知货车每小时的运输成本以元为单位由可变部分和固定部分组成:可变部分与速度千米的平方成正比,比例系数为;固定部分为64元.
把全程运输成本表示为速度千米的函数,并指出这个函数的定义域;
为了使全程运输成本最小,货车应以多大速度行驶?
当前题号:2 | 题型:解答题 | 难度:0.99
下图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆弧AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作,交AB 于M,交EF于N,交圆弧AB于P,已知(单位:m),记通风窗EFGH的面积为S(单位:

(1)按下列要求建立函数关系式:
(i)设,将S表示成的函数;
(ii)设,将S表示成的函数;
(2)试问通风窗的高度MN为多少时,通风窗EFGH的面积S最大?
当前题号:3 | 题型:解答题 | 难度:0.99
为了提高产品的年产量,某企业拟在2016年进行技术改革,经调查测算,产品当年的产量万件与投入技术改革费用万元满足为常数).如果不搞技术改革,则该产品当年的产量只能是1万件,已知2016年生产该产品的固定投入成本为8万元,每生产1万件该产品需要再投入16万元.由于市场行情较好,厂家生产均能销售出去,厂家将每件产品的销售价格定为每件产品生产成本的1.5倍(生产成本包括固定投入和再投入两部分资金).
(1)试确定的值,并将2016年该产品的利润万元表示为技术改革费用万元的函数(利润=销售金额-生产成本-技术改革费用);
(2)该企业2016年的技术改革费用投入多少万元时,厂家的利润最大?并求出最大利润.
当前题号:4 | 题型:解答题 | 难度:0.99
红谷隧道是江西南昌穿越赣江的一条过江行车通道,总长2997米,在南昌大桥和新八一大桥之间,也是国内最大的水下立交系统.已知隧道截面是一圆拱形(圆拱形是取某一圆周的一部分构成巷道拱部的形状),路面宽度米,高4米.车辆只能在道路中心线一侧行驶,一辆宽为2.5米,高为3.5米的货车能否驶入这个隧道?请说明理由.
(参考数据:
当前题号:5 | 题型:解答题 | 难度:0.99
在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边的直线剪去,得到所需的梯形钢材,记这个梯形钢板的周长为 (单位:米),面积为(单位:平方米).

(1)求梯形的面积关于它的周长的函数关系式;
(2)若在生产中,梯形的面积与周长之比(即)达到最大值时,零件才能符合使用要求,试确定这个梯形的周长为多时,该零件才可以在生产中使用?
当前题号:6 | 题型:解答题 | 难度:0.99
某工艺品厂要生产如图所示的一种工艺品,该工艺品由一个实心圆柱体和一个实心半球体组成,要求半球的半径和圆柱的底面半径之比为,工艺品的体积为。现设圆柱的底面半径为,工艺品的表面积为,半球与圆柱的接触面积忽略不计。

(1)试写出关于的函数关系式并求出的取值范围;
(2)怎样设计才能使工艺品的表面积最小?并求出最小值。
参考公式:球体积公式:;球表面积公式:,其中为球半径.
当前题号:7 | 题型:解答题 | 难度:0.99
如图,建造一个容积为,深为,宽为的长方体无盖水池,如果池底的造价为元/,池壁的造价为元/,求水池的总造价.
当前题号:8 | 题型:解答题 | 难度:0.99
小萌大学毕业后,家里给了她10万元,她想办一个“萌萌”加工厂,根据市场调研,她得出了一组毛利润(单位:万元)与投入成本(单位:万元)的数据如下:
投入成本
0.5
1
2
3
4
5
6
毛利润
1.06
1.25
2
3.25
5
7.25
9.98
 
为了预测不同投入成本情况下的利润,她想在两个模型中选一个进行预测.
(1)根据投入成本2万元和4万元的两组数据分别求出两个模型的函数解析式,请你根据给定数据选出一个较好的函数模型进行预测(不必说明理由),并预测她投入8万元时的毛利润;
(2)若小萌准备最少投入2万元开办加工厂,请预测加工厂毛利润率的最大值,并说明理由.(
当前题号:9 | 题型:解答题 | 难度:0.99
为了更好地了解鲸的生活习性,某动物保护组织在受伤的鲸身上安装了电子监测设备,从海岸线放归点处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测.在放归点的正东方向有一观测站,可以对鲸进行生活习性的详细观测.已知,观测站的观测半径为.现以点为坐标原点、以由西向东的海岸线所在直线为轴建立平面直角坐标系,则可以测得鲸的行进路线近似的满足.

(1)若测得鲸的行进路线上一点,求的值;
(2)在(1)问的条件下,问:
①当鲸运动到何处时,开始进入观测站的观测区域内?(计算结果精确到0.1)
②当鲸运动到何处时,离观测站距离最近(观测最便利)?(计算结果精确到0.1)
(参考数据:
当前题号:10 | 题型:解答题 | 难度:0.99