刷题首页
题库
高中数学
题干
某企业需要建造一个容积为8立方米,深度为2米的无盖长方体水池,已知池壁的造价为每平方米100元,池底造价为每平方米300元,设水池底面一边长为
米,水池总造价为
元,求
关于
的函数关系式,并求出水池的最低造价.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-27 02:54:52
答案(点此获取答案解析)
同类题1
某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.
(1)设一次订购
件,服装的实际出厂单价为
元,写出函数
的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
同类题2
某房地产公司要在荒地
ABCDE
(如图)上划出一块长方形地面(不改变方位)建一幢公寓,问如何设计才能使公寓占地面积最大?并求出最大面积(精确到1m
2
).
同类题3
商店某种货物的进价下降了8%,但销售价没变,于是这种货物的销售利润由原来的
m
%增加到(
m
+10)%,那么
m
的值等于________
同类题4
甲、乙两地相距500千米,一辆货车从甲地行驶到乙地,规定速度不得超过100千米
小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
(千米
时)的平方成正比,比例系数为0.01;固定部分为
元(
).
(1)把全程运输成本
(元)表示为速度
(千米
时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
同类题5
如图,某广场要规划一矩形区域
ABCD
,并在该区域内设计出三块形状、大小完全相同的小矩形绿化区,这三块绿化区四周均设置有1 m宽的走道,已知三块绿化区的总面积为200 m
2
,则该矩形区域
ABCD
占地面积的最小值为( )
A.248 m
2
B.288 m
2
C.328 m
2
D.368 m
2
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题