刷题首页
题库
高中数学
题干
如图,某山地车训练中心有一直角梯形森林区域
,其四条边均为道路,其中
,
,
千米,
千米,
千米.现有甲、乙两名特训队员进行野外对抗训练,要求同时从
地出发匀速前往
地,其中甲的行驶路线是
,速度为
千米/小时,乙的行驶路线是
,速度为
千米/小时.
(1)若甲、乙两名特训队员到达
地的时间相差不超过
分钟,求乙的速度
的取值范围;
(2)已知甲、乙两名特训队员携带的无线通讯设备有效联系的最大距离是
千米.若乙先于甲到达
地,且乙从
地到
地的整个过程中始终能用通讯设备对甲保持有效联系,求乙的速度
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-29 05:13:27
答案(点此获取答案解析)
同类题1
衣柜里的樟脑丸,随着时间会挥发,从而体积缩小,刚放入的新樟脑丸体积为a,经过t天后樟脑丸的体积V(t)与天数t的关系式为V(t)=a·e
–kt
,若新樟脑丸经过80天后,体积变为
a,则函数V(t)的解析式为________.
同类题2
某创新团队拟开发一种新产品,根据市场调查估计能获得10万元到1000万元的收益,先准备制定一个奖励方案:奖金
(单位:万元)随收益
(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过收益的20%.
(1)若建立函数
模型制定奖励方案,试用数学语言表示该团队对奖励函数
模型的基本要求,并分析
是否符合团队要求的奖励函数模型,并说明原因;
(2)若该团队采用模型函数
作为奖励函数模型,试确定最小的正整数
的值.
同类题3
某地兴建一休闲商业广场,欲在如图所示的一块不规则用地规划建成一个矩形的商业楼区,余下作为休闲区域,已知
,且AB=BC=2AO=4km,曲线段OC是以O为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在AB、BC上,且一个顶点落在曲线段OC上,应如何规划才能使矩形商业楼区的用地面积最大?
同类题4
我国古代某数学著作中记载了一个折竹抵地问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”意思是:有一根竹子(与地面垂直),原高二丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离为六尺,则折断处离地面的高为__________尺.
同类题5
某工厂在生产产品时需要用到长度为
的
型和长度为
的
型两种钢管.工厂利用长度为
的钢管原材料,裁剪成若干
型和
型钢管,假设裁剪时损耗忽略不计,裁剪后所剩废料与原材料的百分比称为废料率.
(1)要使裁剪的废料率小于
,共有几种方案剪裁?请写出每种方案中分别被裁剪
型钢管和
型钢管的根数;
(2)假设一根
型钢管和一根
型钢管能成为一套毛胚,假定只能按(1)中的那些方案裁剪,若工厂需要生产
套毛胚,则至少需要采购多少根长度为
的钢管原材料?最终的废料率为多少?
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题