- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- + 函数模型的应用实例
- 利用给定函数模型解决实际问题
- 建立拟合函数模型解决实际问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
医药公司针对某种疾病开发了一种新型药物,患者单次服用制定规格的该药物后,其体内的药物浓度
随时间
的变化情况(如图所示):当
时,
与
的函数关系式为
(
为常数);当
时,
与
的函数关系式为
(
为常数).服药
后,患者体内的药物浓度为
,这种药物在患者体内的药物浓度不低于最低有效浓度,才有疗效;而超过最低中毒浓度,患者就会有危险.
(1)首次服药后,药物有疗效的时间是多长?
(2)首次服药1小时后,可否立即再次服用同种规格的这种药物?
(参考数据:
,
)














(1)首次服药后,药物有疗效的时间是多长?
(2)首次服药1小时后,可否立即再次服用同种规格的这种药物?
(参考数据:



某食品厂对蘑菇进行深加工,每千克蘑菇的成本为20元,并且每千克蘑菇的加工费为t元(t为常数,且
),设该食品厂每千克蘑菇的出厂价为x元(
),根据市场调查,日销售量g(单位:kg)与
成反比,每千克蘑菇的出厂价为30元时,日销售量为100kg.
(1)求该工厂的日销售利润y(单位:元)与每千克蘑菇的出厂价x(单位:元)的函数关系式;
(2)求
,当每千克蘑菇的出厂价x为多少元时,该工厂的日销售利润y为
元?



(1)求该工厂的日销售利润y(单位:元)与每千克蘑菇的出厂价x(单位:元)的函数关系式;
(2)求


某种海洋生物身体的长度
(单位:米)与生长年限
(单位:年)满足如下的函数关系:
.(设该生物出生时
)
(1)需经过多少时间,该生物的身长超过8米;
(2)设出生后第
年,该生物长得最快,求
的值.




(1)需经过多少时间,该生物的身长超过8米;
(2)设出生后第


如图为一块平行四边形园地
,经测量,
米,
米,
,拟过线段
上一点
设计一条直路
(点
在四边形
的边上,不计路的宽度),将该园地分为面积之比为
的左、右两部分分别种植不同的花卉,设
,
(单位:米).

(1)当点
与点
重合时,试确定点
的位置;
(2)求
关于
的函数关系式,并确定点
、
的位置,使直路
长度最短.













(1)当点



(2)求





如图为一个摩天轮示意图。该摩天轮圆半径为4.8m,圆上最低点与地面距离为0.8m,60s转动一周.图中OA与地面垂直。以O为始边,逆时针转动0角到OB设B点与地面的距离为hm.

(1)求h与
的函数解析式;
(2)设从OA开始转动,经过ts到达OB,求h与t的函数解析式.

(1)求h与

(2)设从OA开始转动,经过ts到达OB,求h与t的函数解析式.
如图所示,某地一天从6时至14时的温度变化曲线近似满足函数
,其中
,且函数在6时与14时分别取得最小值(最低温度)和最大值(最高温度).

(1)求这段时间的最大温差;
(2)写出这段曲线的函数解析式.



(1)求这段时间的最大温差;
(2)写出这段曲线的函数解析式.
为了配合今年上海迪斯尼游园工作,某单位设计了统计人数的数学模型
:以
表示第
个时刻进入园区的人数;以
表示第
个时刻离开园区的人数.设定以
分钟为一个计算单位,上午
点
分作为第
个计算人数单位,即
;
点
分作为第
个计算单位,即
;依次类推,把一天内从上午
点到晚上
点
分分成
个计算单位(最后结果四舍五入,精确到整数).
(1)试计算当天
点至
点这一小时内,进入园区的游客人数
、离开园区的游客人数
各为多少?
(2)假设当日园区游客总人数达到或超过
万时,园区将采取限流措施.该单位借助该数学模型知晓当天
点(即
)时,园区总人数会达到最高,请问当日是否要采取限流措施?说明理由.


















(1)试计算当天




(2)假设当日园区游客总人数达到或超过



如图,设计一幅矩形宣传画,要求画面面积为
,画面上下边要留
空白,左右要留
空白,怎样确定画面的高与宽的尺寸,才能使宣传画面所用纸张面积最小?




如图所示,
是两个垃圾中转站,
在
的正东方向
千米处,
的南面为居民生活区.为了妥善处理生活垃圾,政府决定在
的北面建一个垃圾发电厂
.垃圾发电厂
的选址拟满足以下两个要求(
可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点
到直线
的距离要尽可能大).现估测得
两个中转站每天集中的生活垃圾量分别约为
吨和
吨,问垃圾发电厂该如何选址才能同时满足上述要求?















某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下跌,后期价格在原有价格基础之上继续下跌.现有三种价格变化的模拟函数可供选择:①
②
③
.其中
均为常数且
.(注:
表示上市时间,
表示价格,记
表示4月1号,
表示5月1号,…,以此类推,
.
(Ⅰ)在上述三个价格模拟函数中,哪一个更能体现该种水果的价格变化态势,请你选择,并简要说明理由;
(Ⅱ)对(I)中所选的函数
,若
,记
,经过多年的统计发现,当函数
取得最大值时,拓展外销市场的效果最为明显,请预测明年拓展外销市场的时间是几月1号?










(Ⅰ)在上述三个价格模拟函数中,哪一个更能体现该种水果的价格变化态势,请你选择,并简要说明理由;
(Ⅱ)对(I)中所选的函数



