刷题首页
题库
高中数学
题干
如图为一块平行四边形园地
,经测量,
米,
米,
,拟过线段
上一点
设计一条直路
(点
在四边形
的边上,不计路的宽度),将该园地分为面积之比为
的左、右两部分分别种植不同的花卉,设
,
(单位:米).
(1)当点
与点
重合时,试确定点
的位置;
(2)求
关于
的函数关系式,并确定点
、
的位置,使直路
长度最短.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-07 07:08:18
答案(点此获取答案解析)
同类题1
如图所示的某种容器的体积为
,它是由圆锥和圆柱两部分连结而成的,圆柱与圆锥的底面圆半径都为
.圆锥的高为
,母线与底面所成的角为
;圆柱的高为
.已知圆柱底面造价为
元
,圆柱侧面造价为
元
,圆锥侧面造价为
元
.
(1)将圆柱的高
表示为底面圆半径
的函数,并求出定义域;
(2)当容器造价最低时,圆柱的底面圆半径
为多少?
同类题2
某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划成一个矩形高科技工业园区.已知
且
曲线段
是以点
为顶点且开口向右的抛物线的一段.
(I)建立适当的坐标系,求曲线段
的方程;
(II)如果要使矩形的相邻两边分别落在
上,且一个顶点P落在曲线段OC上,问如何规划才能使矩形工业园区的用地面积最大?并求这个最大值.
同类题3
某校要建一个面积为392m
2
的长方形游泳池,并且在四周要修建出宽为2m和4m的小路(如图所示),则占地面积的最小值为
________
m
2
.
同类题4
某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:
第
天
1
2
3
4
5
被感染的计算机数量
(台)
10
20
39
81
160
则下列函数模型中,能较好地反映计算机在第
天被感染的数量
与
之间的关系的是
A.
B.
C.
D.
同类题5
将一张长方形的纸片沿着一条直线折叠,折痕(线段)将纸片分成两部分,其中纸片的长
,宽
.
(1)按图1情形折叠,其中
在边
上,
在边
上,设
,若
的面积为
,求
的取值范围;
(2)按图2情形折叠,其中
分别在边
上(
不与长方形顶点重合),记折痕长
为
,若四边形
的面积为
,求折痕长
的取值范围.
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题
求三角形中的最值与范围