刷题首页
题库
高中数学
题干
某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下跌,后期价格在原有价格基础之上继续下跌.现有三种价格变化的模拟函数可供选择:①
②
③
.其中
均为常数且
.(注:
表示上市时间,
表示价格,记
表示4月1号,
表示5月1号,…,以此类推,
.
(Ⅰ)在上述三个价格模拟函数中,哪一个更能体现该种水果的价格变化态势,请你选择,并简要说明理由;
(Ⅱ)对(I)中所选的函数
,若
,记
,经过多年的统计发现,当函数
取得最大值时,拓展外销市场的效果最为明显,请预测明年拓展外销市场的时间是几月1号?
上一题
下一题
0.99难度 解答题 更新时间:2016-05-10 09:58:09
答案(点此获取答案解析)
同类题1
某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划成一个矩形高科技工业园区.已知
且
曲线段
是以点
为顶点且开口向右的抛物线的一段.
(I)建立适当的坐标系,求曲线段
的方程;
(II)如果要使矩形的相邻两边分别落在
上,且一个顶点P落在曲线段OC上,问如何规划才能使矩形工业园区的用地面积最大?并求这个最大值.
同类题2
某地要建造一个边长为2(单位:
)的正方形市民休闲公园
,将其中的区域
开挖成一个池塘,如图建立平面直角坐标系后,点
的坐标为
,曲线
是函数
图像的一部分,过边
上一点
在区域
内作一次函数
(
)的图像,与线段
交于点
(点
不与点
重合),且线段
与曲线
有且只有一个公共点
,四边形
为绿化风景区.
(1)求证:
;
(2)设点
的横坐标为
,
①用
表示
、
两点的坐标;
②将四边形
的面积
表示成关于
的函数
,并求
的最大值.
同类题3
土壤重金属污染已经成为快速工业化和经济高速增长地区的一个严重问题,污染土壤中的某些重金属易被农作物吸收,并转入食物链影响大众健康.A,B两种重金属作为潜在的致癌物质,应引起特别关注.某中学科技小组对由A,B两种重金属组成的1000克混合物进行研究,测得其体积为100立方厘米(不考虑物理及化学变化),已知重金属A的密度大于
,小于
,重金属B的密度为
.试计算此混合物中重金属A的克数的范围.
同类题4
2017年,在国家创新驱动战略下,北斗系统作为一项国家高科技工程,一个开放型的创新平台,1400多个北斗基站遍布全国,上万台设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以达到厘米或毫米级。最近北斗三号工程耗资
元建成一大型设备,已知这台设备维修和消耗费用第一年为
元,以后每年增加
元(
是常数),用
表示设备使用的年数,记设备年平均维修和消耗费用为
,即
(设备单价
设备维修和消耗费用)
设备使用的年数.
(1)求
关于
的函数关系式;
(2)当
,
时,求这种设备的最佳更新年限.
同类题5
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点
为圆心的两个同心圆弧
、弧
以及两条线段
和
围成的封闭图形.花坛设计周长为30米,其中大圆弧
所在圆的半径为10米.设小圆弧
所在圆的半径为
米(
),圆心角为
弧度.
(1)求
关于
的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,当
为何值时,
取得最大值?
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题
基本不等式求和的最小值