- 集合与常用逻辑用语
- 函数与导数
- 利用二次函数模型解决实际问题
- + 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种商品在天
内每克的销售价格
(元)与时间
的函数图象是如图所示的两条线段
(不包含
两点);该商品在 30 天内日销售量
(克)与时间
(天)之间的函数关系如下表所示:

(1)根据提供的图象,写出该商品每克销售的价格
(元)与时间
的函数关系式;
(2)根据表中数据写出一个反映日销售量
随时间
变化的函数关系式;
(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的
值.
(注:日销售金额=每克的销售价格×日销售量)







第![]() | 5 | 15 | 20 | 30 |
销售量![]() | 35 | 25 | 20 | 10 |

(1)根据提供的图象,写出该商品每克销售的价格


(2)根据表中数据写出一个反映日销售量


(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的

(注:日销售金额=每克的销售价格×日销售量)
提高过江大桥的车辆通行能力可改善整个城市的交通状况,一般情况下,大桥上的车流速度
(单位:千米/小时)是车流密度
(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度小于30辆/千米时,车流速度为68千米/小时,研究表明:当
时,车流速度
与车流密度
之间满足函数关系式:
,(
为常数)。
(1)当
时,求函数
的解析式;
(2)当车流密度
多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)
可以达到最大?并求出最大值。







(1)当


(2)当车流密度


《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过5000元的部分不纳税,超过5000元的部分为全月纳税所得额,此项税款按下表分段累计计算:

(1)已知张先生的月工资、薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资、薪金所得为
元,当月应缴纳个人所得税为
元,写出
与
的函数关系式;

(1)已知张先生的月工资、薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资、薪金所得为




某工厂生产一种机器的固定成本(即固定投入)为
万元,但每生产一百台,需要新增投入
万元,经调查,市场一年对此产品的需求量为
台,销售收入为
(万元).(
),其中
是产品售出的数量(单位:百台)
(1)把年利润
表示为年产量
(单位:百台)的函数;
(2)当年产量为多少时,工厂所获得年利润最大?






(1)把年利润


(2)当年产量为多少时,工厂所获得年利润最大?
某城市出租车的收费标准是:起步价5元(乘车不超过3千米);行驶3千米后,每千米车费1.2元;行驶10千米后,每千米车费1.8元.
(1)写出车费与路程的关系式;
(2)一乘客计划行程30千米,为了节省支出,他设计了三种乘车方案:
①不换车:乘一辆出租车行30千米;
②分两段乘车:先乘一辆车行15千米,换乘另一辆车再行15千米;
③分三段乘车:每乘10千米换一次车.
问哪一种方案最省钱?
(1)写出车费与路程的关系式;
(2)一乘客计划行程30千米,为了节省支出,他设计了三种乘车方案:
①不换车:乘一辆出租车行30千米;
②分两段乘车:先乘一辆车行15千米,换乘另一辆车再行15千米;
③分三段乘车:每乘10千米换一次车.
问哪一种方案最省钱?
为了维持市场持续发展,壮大集团力量,某集团在充分调查市场后决定从甲、乙两种产品中选择一种进行投资生产,打入国际市场.已知投资生产这两种产品的有关数据如下表(单位:万美元):
其中年固定成本与年生产的件数无关,a为常数,且6≤a≤8.另外,当年销售x件乙产品时需上交0.05x2万美元的特别关税,假设所生产的产品均可售出.
(1)写出该集团分别投资生产甲、乙两种产品的年利润y1,y2与生产相应产品的件数x(x∈N*)之间的函数关系式;
(2)分别求出投资生产这两种产品的最大年利润;
(3)如何决定投资可使年利润最大.
| 年固定成本 | 每件产品的成本 | 每件产品的销售价 | 每年可最多生产的件数 |
甲产品 | 20 | a | 10 | 200 |
乙产品 | 40 | 8 | 18 | 120 |
其中年固定成本与年生产的件数无关,a为常数,且6≤a≤8.另外,当年销售x件乙产品时需上交0.05x2万美元的特别关税,假设所生产的产品均可售出.
(1)写出该集团分别投资生产甲、乙两种产品的年利润y1,y2与生产相应产品的件数x(x∈N*)之间的函数关系式;
(2)分别求出投资生产这两种产品的最大年利润;
(3)如何决定投资可使年利润最大.
某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中
,x是新样式单车的月产量(单位:件),利润=总收益﹣总成本.
(1)试将自行车厂的利润y元表示为月产量x的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

(1)试将自行车厂的利润y元表示为月产量x的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?
某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:
若某家庭5月份的高峰时间段用电量为 200 千瓦时,低谷时间段用电量为 100 千瓦时,则按这种计费方式该家庭本月应付的电费为____________元.(用数字作答)
高峰时间段用电价格表 | 低谷时间段用电价格表 | ||
高峰月用 电量(单 位:千瓦时) | 高峰电价 (单位:元/ 千瓦时) | 低谷月用 电量(单位: 千瓦时) | 低谷电价 (单位:元/ 千瓦时) |
50及以下 的部分 | 0.568 | 50及以下 的部分 | 0.288 |
超过 50 至 200 的部分 | 0.598 | 超过 50 至 200 的部分 | 0.318 |
超过200 的部分 | 0.668 | 超过 200 的部分 | 0.388 |
若某家庭5月份的高峰时间段用电量为 200 千瓦时,低谷时间段用电量为 100 千瓦时,则按这种计费方式该家庭本月应付的电费为____________元.(用数字作答)
在一次为期 15 天的大型运动会期间,每天主办方要安排专用大巴车接送运动员到各比赛场馆参赛,每辆大巴车可乘坐 40 人,已知第 t 日参加比赛的运动员人数 M 与 t 的关系是M(t)=
为了保证赛会期间运动员都能按时参赛,主办方应至少准备大巴车的数量是( )

A.7 | B.8 |
C.9 | D.10 |
高邮市清水潭旅游景点国庆期间,团队收费方案如下:不超过40人时,人均收费100元;超过40人且不超过
(
)人时,每增加
人,人均收费降低
元;超过
人时,人均收费都按照
人时的标准.设景点接待有
名游客的某团队,收取总费用为
元.
(1)求
关于
的函数表达式;
(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数增加而增加,求
的取值范围.








(1)求


(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数增加而增加,求
