- 集合与常用逻辑用语
- 函数与导数
- 利用二次函数模型解决实际问题
- + 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过3500元的部分不纳税,超过3500元的部分为全月税所得额,此项税款按下表分段累计计算:
(1)已知张先生的月工资,薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资,薪金所得为
,当月应缴纳个人所得税为
元,写出
与
的函数关系式;
(3)已知王先生一月份应缴纳个人所得税为303元,那么他当月的工资、薪金所得为多少?
全月应纳税所得额 | 税率 |
不超过1500元的部分 | ![]() |
超过1500元至4500元的部分 | ![]() |
超过4500元至9000元的部分 | ![]() |
(1)已知张先生的月工资,薪金所得为10000元,问他当月应缴纳多少个人所得税?
(2)设王先生的月工资,薪金所得为




(3)已知王先生一月份应缴纳个人所得税为303元,那么他当月的工资、薪金所得为多少?
如图,在四边形ABCD中,AB∥CD,AB⊥BC,AD=DC=2,CB=
,动点P从点A出发,按照A→D→C→B路径沿边运动,设点P运动的路程为x,△APB的面积为y,则函数y=f(x)的图象大致是( )



A.![]() | B.![]() |
C.![]() | D.![]() |
某水果经销商决定在八月份(30天计算)销售一种时令水果.在这30天内,日销售量h(斤)与时间t(天)满足一次函数h=
t+2,每斤水果的日销售价格l(元)与时间t(天)满足如图所示的对应关系.
(Ⅰ)根据提供的图象,求出每斤水果的日销售价格l(元)与时间t(天)所满足的函数关系式;
(Ⅱ)设y(元)表示销售水果的日收入(日收入=日销售量×日销售价格),写出y与t的函数关系式,并求这30天中第几天日收入最大,最大值为多少元?

(Ⅰ)根据提供的图象,求出每斤水果的日销售价格l(元)与时间t(天)所满足的函数关系式;
(Ⅱ)设y(元)表示销售水果的日收入(日收入=日销售量×日销售价格),写出y与t的函数关系式,并求这30天中第几天日收入最大,最大值为多少元?

某校学生研究性学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设
表示学生注意力指标,该小组发现
随时间
(分钟)的变化规律(
越大,表明学生的注意力越集中)如下:
(
,且
)
若上课后第
分钟时的注意力指标为
,回答下列问题:
(1)求
的值;
(2)上课后第
分钟时和下课前
分钟时比较,哪个时间注意力更集中?并请说明理由.
(3)在一节课中,学生的注意力指标至少达到
的时间能保持多长?







若上课后第


(1)求

(2)上课后第


(3)在一节课中,学生的注意力指标至少达到

如图所示,某种药物服药后每毫升血液中的含药量y(微克)与时间t(小时)之间满足函数关系式;不超过1小时为y=kt,1小时后为
.

(1)写出y与t之间的函数关系式.
(2)如果每毫升血液中含药量不少于
微克时治疗有效,那么服药后治疗有效的时间是多长?


(1)写出y与t之间的函数关系式.
(2)如果每毫升血液中含药量不少于

某公司对营销人员有如下规定:
(i)年销售额x(万元)不大于8时,没有年终奖金;
(ⅱ)年销售额x(万元)大于8时,年销售额越大,年终奖金越多.此时,当年销售额x(万元)不大于64时,年终奖金y(万元)按关系式y=logax+b,(a>0,且a≠1)发放;当年销售额x(万元)不小于64时,年终奖金y(万元)为年销售额x(万元)的一次函数经测算,当年销售额分别为16万元,64万元,80万元时,年终奖金依次为1万元,3万元,5万元.
(1)求y关于x的函数解析式;
(2)某营销人员年终奖金高于2万元但低于4万元,求该营销人员年销售额x(万元)的取值范围.
(i)年销售额x(万元)不大于8时,没有年终奖金;
(ⅱ)年销售额x(万元)大于8时,年销售额越大,年终奖金越多.此时,当年销售额x(万元)不大于64时,年终奖金y(万元)按关系式y=logax+b,(a>0,且a≠1)发放;当年销售额x(万元)不小于64时,年终奖金y(万元)为年销售额x(万元)的一次函数经测算,当年销售额分别为16万元,64万元,80万元时,年终奖金依次为1万元,3万元,5万元.
(1)求y关于x的函数解析式;
(2)某营销人员年终奖金高于2万元但低于4万元,求该营销人员年销售额x(万元)的取值范围.
某科研小组研究发现:一棵水果树的产量
(单位:百千克)与肥料费用(单位:百元)满足如下关系:
.此外,还需要投入其它成本(如施肥的人工费等)
百元.已知这种水果的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水果树获得的利润为
(单位:百元).
(1)求
的函数关系式;
当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?




(1)求

当投入的肥料费用为多少时,该水果树获得的利润最大?最大利润是多少?
某地的出租车价格规定:起步费11元,可行驶3千米;3千米以后按每千米
元计价,可再行驶7千米;以后每千米都按3.15元计价.

(1)写出车费
(元)与行车里程
(千米)之间的函数关系式.
(2)在坐标系中画出(1)中函数的图像.
(3)现某乘客要打车到14千米的地方,有三个不同的方案打出租车.甲方案:每次走完起步费的路程后就重新打出租车,直到走完全部路程;乙方案:先乘出租车走完10千米的路程,再重新打出租车一直走完剩下的路程;丙方案:只乘一辆出租车到底.试比较哪种方案乘客省钱?


(1)写出车费


(2)在坐标系中画出(1)中函数的图像.
(3)现某乘客要打车到14千米的地方,有三个不同的方案打出租车.甲方案:每次走完起步费的路程后就重新打出租车,直到走完全部路程;乙方案:先乘出租车走完10千米的路程,再重新打出租车一直走完剩下的路程;丙方案:只乘一辆出租车到底.试比较哪种方案乘客省钱?
某服装批发市场销售季节性流行服装F,当季节即将来临时,价格呈上升趋势,开始时每件定价为120元,并且每周(7天)每件涨价10元(第1周每件定价为120元,第2周每件定价为130元),4周后开始保持每件160元的价格销售;8周后当季节即将过去时,平均每周每件降价10元,直到第12周末,该服装不再销售.
(1)试建立每件售价A与周次t之间的函数关系式;
(2)若此服装每件进价B与周次t之间的关系式为
,问该服装第几周每件销售利润R最大?并求出最大值,(注:每件销售利润=售价一进价)
(1)试建立每件售价A与周次t之间的函数关系式;
(2)若此服装每件进价B与周次t之间的关系式为
