- 集合与常用逻辑用语
- 函数与导数
- + 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比例,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).
(1)分别将A、B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?
(1)分别将A、B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?

某体育用品商场经营一批进价为40元的运动服,经市场调查发现销售量y(件)与销售单价x(元)符合一次函数模型,且销售单价为60元时,销量是600件;当销售单价为64元时,销量是560件.
(1)写出销售量y(件)与销售单价x(元)之间的函数关系式
;
(2)试求销售利润z(元)与销售单价x(元)之间的函数关系式;
(3)在(1)(2)条件下,当销售单价为多少元时,商场能获得最大利润?并求出此最大利润.
(1)写出销售量y(件)与销售单价x(元)之间的函数关系式

(2)试求销售利润z(元)与销售单价x(元)之间的函数关系式;
(3)在(1)(2)条件下,当销售单价为多少元时,商场能获得最大利润?并求出此最大利润.
新能源汽车是我国汽车工业由大变强的一条必经之路!国家对其给予政策上的扶持,己成为我国的战略方针.近年来,我国新能源汽车制造蓬勃发展,某著名车企自主创新,研发了一款新能源汽车,经过大数据分析获得:在某种路面上,该品牌汽车的刹车距离
(米)与其车速
(千米/小时)满足下列关系:
(
,
是常数).(行驶中的新能源汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离).如图是根据多次对该新能源汽车的实验数据绘制的刹车距离
(米)与该车的车速
(千米/小时)的关系图.该新能源汽车销售公司为满足市场需求,国庆期间在甲、乙两地同时展销该品牌的新能源汽车,在甲地的销售利润(单位:万元)为
,在乙地的销售利润(单位:万元)为
,其中
为销售量(单位:辆).

(1)若该公司在两地共销售20辆该品牌的新能源汽车,则能获得的最大利润
是多少?
(2)如果要求刹车距离不超过25.2米,求该品牌新能源汽车行驶的最大速度.











(1)若该公司在两地共销售20辆该品牌的新能源汽车,则能获得的最大利润

(2)如果要求刹车距离不超过25.2米,求该品牌新能源汽车行驶的最大速度.
“2019年”是一个重要的时间节点——中华人民共和国成立70周年,和全面建成小康社会的关键之年.70年披荆斩棘,70年砥砺奋进,70年风雨兼程,70年沧桑巨变,勤劳勇敢的中国人用自己的双手创造了一项项辉煌的成绩,取得了举世瞩目的成就.趁此良机,李明在天猫网店销售“新中国成立70周年纪念册”,每本纪念册进价4元,物流费、管理费共为
元/本,预计当每本纪念册的售价为
元(
时,月销售量为
千本.
(I)求月利润
(千元)与每本纪念册的售价X的函数关系式,并注明定义域:
(II)当
为何值时,月利润
最大?并求出最大月利润.




(I)求月利润

(II)当


某民营企业生产A,B两种产品,根据市场调查与预测,A产品的利润y与投资x成正比,其关系如图甲,B产品的利润y与投资x的算术平方根成正比,其关系如图乙
注:利润与投资单位为万元
分别将A,B两种产品的利润y表示为投资x的函数关系式;
该企业已筹集到10万元资金,并全部投入A,B两种产品的生产
问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少万元?






某人定制了一批地砖,每块地砖(如图所示)是边长为
的正方形
,点
,
分别在边
和
上,且
,
,
和四边形
均由单一材料制成.制成
,
和四边形
的三种材料的每平方米价格依次为30元、20元、10元,问点
在什么位置时,每块地砖所需的材料费用最省?















某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点
为圆心的两个同心圆弧和延长后通过点
,
的两条线段围成.设圆弧
和圆弧
所在圆的半径分别为
米,圆心角为θ(弧度).

(1)若
,
,求花坛的面积;
(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD的长度为多少时,花坛的面积最大?







(1)若


(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD的长度为多少时,花坛的面积最大?
现有A,B两个投资项目,投资两项目所获得利润分别是
和
(万元),它们与投入资金
(万元)的关系依次是:其中
与
平方根成正比,且当
为4(万元)时
为1(万元),又
与
成正比,当
为4(万元)时
也是1(万元);某人甲有3万元资金投资.
(Ⅰ)分别求出
,
与
的函数关系式;
(Ⅱ)请帮甲设计一个合理的投资方案,使其获利最大,并求出最大利润是多少?











(Ⅰ)分别求出



(Ⅱ)请帮甲设计一个合理的投资方案,使其获利最大,并求出最大利润是多少?
首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本
(元)与月处理量
(吨)之间的函数关系可近似地表示为
,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?



(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?
某企业生产A、B两种产品,根据市场调查,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的平方根成正比,其关系如图2(注:单位是万元).

图1 图2
(1)若A、B两种产品的利润表示为投资的函数分别为
、
,求出它们的表达式并注明定义域;
(2)现企业有20万元资金全部投入A、B两种产品的生产,问:怎样分配这20万元资金,能使获得的利润最大,其最大利润是多少万元?


图1 图2
(1)若A、B两种产品的利润表示为投资的函数分别为


(2)现企业有20万元资金全部投入A、B两种产品的生产,问:怎样分配这20万元资金,能使获得的利润最大,其最大利润是多少万元?