刷题首页
题库
高中数学
题干
某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点
为圆心的两个同心圆弧和延长后通过点
,
的两条线段围成.设圆弧
和圆弧
所在圆的半径分别为
米,圆心角为
θ
(弧度).
(1)若
,
,求花坛的面积;
(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段
AD
的长度为多少时,花坛的面积最大?
上一题
下一题
0.99难度 解答题 更新时间:2019-12-25 06:54:29
答案(点此获取答案解析)
同类题1
某工厂生产某种产品的固定成本为200万元,并且生产量每增加一单位,成本增加1万元,又知总收入
是生产数量
的函数
,则总利润
的最大值是______万元,这时产品的生产数量为______.(总利润=总收入-成本)
同类题2
用
长的铁线围成一个扇形,应怎样设计才能使扇形的面积最大,最大面积是多少?
同类题3
渭南经开区某企业生产的一种电器的固定成本(即固定投资)为0.5万元,每生产一台这种电器还需可变成本(即另增加投资)25元,市场对这种电器的年需求量为5百台.已知这种电器的销售收入(
)与销售量(
)的关系可用抛物线表示如图
(注:年产量与销售量的单位:百台,纯收益的单位:万元,生产成本=固定成本+可变成本,精确到1台和0.01万元)
(1)写出销售收入(
)与销售量(
)之间的函数关系
;
(2)认定销售收入减去生产成本为纯收益,写出纯收益与年产量的函数关系式,并求年产量是多少时,纯收益最大.
同类题4
某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为80万元,同时将受到环保部门的处罚,第一个月罚4万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面可以大大降低原料成本,据测算,添加回收净化设备并投产后的前4个月中的累计生产净收入
g
(
n
)是生产时间
个月的二次函数
是常数
,且前3个月的累计生产净收入可达309万元,从第5个月开始,每个月的生产净收入都与第4个月相同,同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励120万元.
(1)求前6个月的累计生产净收入
g
(6)的值;
(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造的纯收入.
同类题5
某水仙花经营部每天的房租、水电、人工等固定成本为1000元,每盆水仙花的进价是10元,销售单价
(元) (
)与日均销售量
(盆)的关系如下表,并保证经营部每天盈利.
20
35
40
50
400
250
200
100
20
35
40
50
400
250
200
100
(Ⅰ) 在所给的坐标图纸中,根据表中提供的数据,描出实数对
的对应点,并确定
与
的函数关系式;
(Ⅱ)求出
的值,并解释其实际意义;
(Ⅲ)请写出该经营部的日销售利润
的表达式,并回答该经营部怎样定价才能获最大日销售利润?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
扇形弧长公式与面积公式的应用