- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
表示一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发1.5 h后追上了骑自行车者;
④骑摩托车者在出发1.5 h后与骑自行车者速度一样.
其中,正确信息的序号是________.
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发1.5 h后追上了骑自行车者;
④骑摩托车者在出发1.5 h后与骑自行车者速度一样.
其中,正确信息的序号是________.
某“农家乐”接待中心有客房200间,每间日租金为40元,每天都客满.根据实际需要,该中心需提高租金,如果每间客房日租金每增加4元,客房出租就会减少10间.(不考虑其他因素)
(1)设每间客房日租金提高
元(
),记该中心客房的日租金总收入为
,试用
表示
(2)在(1)的条件下,每间客房日租金为多少时,该中心客房的日租金总收入最高?
(1)设每间客房日租金提高





(2)在(1)的条件下,每间客房日租金为多少时,该中心客房的日租金总收入最高?
如图,用长为12m的铁丝弯成下部为矩形,上部为半圆形的框架窗户,若半圆半径为x.
(1)求此框架围成的面积y与x的函数式y=f(x),并写出它的定义域.
(2)半圆的半径是多长时,窗户透光的面积最大?
(1)求此框架围成的面积y与x的函数式y=f(x),并写出它的定义域.
(2)半圆的半径是多长时,窗户透光的面积最大?

2018年10月24日,世界上最长的跨海大桥一港珠澳大桥正式通车
在一般情况下,大桥上的车流速度
单位:千米
时
是车流密度
单位:辆
千米
的函数
当桥上的车流密度达到220辆
千米时,将造成堵塞,此时车流速度为0;当车流密度不超过20辆
千米时,车流速度为100千米
时,研究表明:当
时,车流速度v是车流密度x的一次函数.
Ⅰ
当
时,求函数
的表达式;
Ⅱ
当车流密度x为多大时,车流量
单位时间内通过桥上某观测点的车辆数,单位:辆
时
可以达到最大?并求出最大值.





















某商场出售一种商品,每天可卖1 000件,每件可获利4元.据经验,若这种商品每件每降价0.1元,则比降价前每天可多卖出100件,为获得最好的经济效益,每件售价应降低的价格为( )
A.2元 | B.2.5元 |
C.1元 | D.1.5元 |
某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似表示为
,已知此生产线年产量最大为210吨,若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

某旅游景点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金
元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用
表示出租所有自行车的日净收入(即一日中出租所以自行车的总收入减去管理费用后的所得).
(1)求函数
的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?


(1)求函数

(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?
某厂推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据统计数据,总收益P(单位:元)与月产量x(单位:件)满足
(注:总收益=总成本+利润)
(1)请将利润y(单位:元)表示成关于月产量x(单位:件)的函数;
(2)当月产量为多少时,利润最大?最大利润是多少?

(1)请将利润y(单位:元)表示成关于月产量x(单位:件)的函数;
(2)当月产量为多少时,利润最大?最大利润是多少?
为纪念重庆黑山谷晋升国家5A级景区五周年,特发行黑山谷纪念邮票,从2017年11月1日起开始上市.通过市场调查,得到该纪念邮票在一周内每1张的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;
(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.
上市时间x天 | 1 | 2 | 6 |
市场价y元 | 5 | 2 | 10 |
(Ⅰ)分析上表数据,说明黑山谷纪念邮票的市场价y(单位:元)与上市时间x(单位:天)的变化关系,并判断y与x满足下列哪种函数关系,①一次函数;②二次函数;③对数函数,并求出函数的解析式;
(Ⅱ)利用你选取的函数,求黑山谷纪念邮票市场价最低时的上市天数及最低的价格.