刷题首页
题库
高中数学
题干
某厂推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20000元,每生产一件“玉兔”需要增加投入100元,根据统计数据,总收益
P
(单位:元)与月产量
x
(单位:件)满足
(注:总收益=总成本+利润)
(1)请将利润
y
(单位:元)表示成关于月产量
x
(单位:件)的函数;
(2)当月产量为多少时,利润最大?最大利润是多少?
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 08:14:31
答案(点此获取答案解析)
同类题1
整改校园内一块长为15 m,宽为11 m的长方形草地(如图A),将长减少1 m,宽增加1 m(如图B).问草地面积是增加了还是减少了?假设长减少
x
m,宽增加
x
m(
x
>0),试研究以下问题:
x
取什么值时,草地面积减少?
x
取什么值时,草地面积增加?
同类题2
已知美国苹果公司生产某款iphone手机的年固定成本为40万美元,每生产1万部还需要另外投入16美元,设苹果公司一年内共生产该款iphone手机
万部并全部销售完,每万部的销售收入为
万元,且
.
(1)写出年利润
(万元)关于年产量
(万部)的函数解析式;
(2)当年产量为多少万部时,苹果公司在该款手机的生产中所获得的利润最大?并求出最大利润.
同类题3
原正方形的边长为2,若边长减少
,则所得正方形面积
与
的函数关系是______.
同类题4
某公司有价值
万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值
万元与技术改造投入
万元之间的关系满足:①
与
和
的乘积成正比;②
时,
;③
,其中
为常数,且
.
(Ⅰ)设
,求
表达式,并求
的定义域;
(Ⅱ)求出附加值
的最大值,并求出此时的技术改造投入.
同类题5
某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本
(万元)与年产量
(吨)之间的关系可近似地表示为
.
(1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本
(2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润.
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题
分段函数模型的应用