共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数,其中是新样式单车的月产量(单位:件),利润总收益总成本.
(1)试将自行车厂的利润元表示为月产量的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?
当前题号:1 | 题型:解答题 | 难度:0.99
国家相继出台多项政策控制房地产行业,现在规定房地产行业收入税如下:年收入在280万元及以下的税率为;超过280万元的部分按征税.现有一家公司的实际缴税比例为,则该公司的年收入是
A.万元B.万元
C.万元D.万元
当前题号:2 | 题型:单选题 | 难度:0.99
旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过人时,飞机票每张收费元;若旅行团的人数多于人时,则予以优惠,每多人,每个人的机票费减少元,但旅行团的人数最多不超过人.设旅行团的人数为人,飞机票价格元,旅行社的利润为元.
(1)写出飞机票价格元与旅行团人数之间的函数关系式;
(2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.
当前题号:3 | 题型:解答题 | 难度:0.99
海康威视数字技术股份有限公司在***“企业持续发展之基、市场制胜之道在于创新”的号召下,研制出了一种新产品。该公司试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.

(1)分别写出国外市场的日销售量与上市时间的关系及国内市场的日销售量与上市时间的关系;
(2)该产品上市后,问哪一天这家公司的日销售利润最大?最大是多少?
当前题号:4 | 题型:解答题 | 难度:0.99
2018年1月8日,中共中央国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值与这种新材料的含量(单位:克)的关系为:当时,的二次函数;当时,
测得数据如表(部分)

0
1
2
9


0

3


 
(1)求关于的函数关系式
(2)求函数的最大值.
当前题号:5 | 题型:解答题 | 难度:0.99
某商场将进价为2000元的冰箱以2400元售出,平均每天能售岀8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出yx之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
当前题号:6 | 题型:解答题 | 难度:0.99
通过研究学生在课堂上的学习行为,心理学家发现,学生的注意力与课堂时间有密切关系:课堂开始时,学生的注意力激增;中间有一段时间,学生的注意力保持较理想的状态;随后学生的注意力开始下降.分析结果和实验表明,用表示学生的注意力:的值越大,表示学生的注意力越集中,x表示课堂时间(单位:min),有如下公式: .
(1)讲课开始后5min和讲课开始后20min比较,何时学生的注意力更集中?
(2)一道数学难题,需要讲解13min,并且要求学生的注意力至少达到55,那么老师能否在学生达到所需状态下讲授完这道题目?请说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
10辆货车从A站匀速驶往相距2000千米的B站,其时速都是v千米/小时,为安全起见,要求:每辆车时速不得超过100千米/小时,每辆货车间隔kv2千米(k为常数,货车长度忽略不计).将第一辆货车由A出发到最后一辆货车到达B站所需时间t表示为v的函数fv).
(1)求t=fv),并写出v的取值范围;
(2)若k=请问,当v取何值时,t有最小值?并求出最小值.
当前题号:8 | 题型:解答题 | 难度:0.99
在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了个面包,以(单位:个,)表示面包的需求量,(单位:元)表示利润.

(1)求关于的函数解析式;
(2)根据直方图估计利润不少于元的概率.
当前题号:9 | 题型:解答题 | 难度:0.99
某企业今年初用72万元购买一套新设备用于生产,该设备第一年需各种费用12万元,从第二年起,每年所需费用均比上一年增加4万元,该设备每年的总收入为50万元,设生产x年的   盈利总额为y万元.写出y与x的关系式;
①经过几年生产,盈利总额达到最大值?最大值为多少?
②经过几年生产,年平均盈利达到最大值?最大值为多少
当前题号:10 | 题型:解答题 | 难度:0.99