刷题首页
题库
高中数学
题干
10辆货车从
A
站匀速驶往相距2000千米的
B
站,其时速都是
v
千米/小时,为安全起见,要求:每辆车时速不得超过100千米/小时,每辆货车间隔
kv
2
千米(
k
为常数,货车长度忽略不计).将第一辆货车由
A
出发到最后一辆货车到达
B
站所需时间
t
表示为
v
的函数
f
(
v
).
(1)求
t
=
f
(
v
),并写出
v
的取值范围;
(2)若
k
=
请问,当
v
取何值时,
t
有最小值?并求出最小值.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-12 07:42:11
答案(点此获取答案解析)
同类题1
按照某学者的理论,假设一个人生产某产品单件成本为
元,如果他卖出该产品的单价为
元,则他的满意度为
;如果他买进该产品的单价为
元,则他的满意度为
.如果一个人对两种交易(卖出或买进)的满意度分别为
和
,则他对这两种交易的综合满意度为
.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为
元和
元,甲买进A与卖出B的综合满意度为
,乙卖出A与买进B的综合满意度为
(1)求
和
关于
、
的表达式;当
时,求证:
=
;
(2)设
,当
、
分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为
,试问能否适当选取
、
的值,使得
和
同时成立,但等号不同时成立?试说明理由。
同类题2
某小区内有如图所示的一矩形花坛,现将这一矩形花坛
扩建成一个更大的矩形花坛
,要求
点在
上,
点在
上,且对角线
过
点,已知
米,
米.
(1)要使矩形
的面积大于32平方米,则
的长应在什么范围内?
(2)当
的长度是多少时,矩形花坛
的面积最小?并求出最小值.
同类题3
2019年是中华人民共和国建国70周年.建国70年来,我们始终坚持保护环境和节约资源,坚持推进生态文明建设。某市政府也越来越重视生态系统的重建和维护,若市财政下拨一项专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目带来的生态收益可表示为投放资金
单位:百万元
的函数
单位:百万元
:
,处理污染项目带来的生态收益可表示为投放资金
单位:百万元
的函数
单位:百万元
:
.
(1)设分配给植绿护绿项目的资金为
百万元
,则两个生态项目带来的收益总和为
y
,写出
y
关于
x
的函数解析式和定义域;
(2)试求出
y
的最大值,并求出此时对两个生态项目的投资分别为多少.
同类题4
某厂家拟在新年举行大型的促销活动,经测算某产品当促销费用为
万元时,销售量
万件满足
(其中
,
为正常数).现假定生产量与销售量相等,已知生产该产品
万件还需投入成本
万元(不含促销费用),产品的销售价格定为
万元/万件.
(1)将该产品的利润
万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
同类题5
某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为
元时,销售量可达到
万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:
(1)每套丛书售价定为100元时,书商所获得的总利润是多少万元?
(2)每套丛书售价定为多少元时,单套丛书的利润最大?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分式型函数模型的应用
基本不等式求和的最小值