共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用.据市场分析,每辆单车的营运累计收入(单位:元)与营运天数满足.
(1)要使营运累计收入高于800元,求营运天数的取值范围;
(2)每辆单车营运多少天时,才能使每天的平均营运收入最大?
当前题号:1 | 题型:解答题 | 难度:0.99
某企业为打入国际市场,决定从两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)

其中年固定成本与年生产的件数无关,为待定常数,其值由生产产品的原材料价格决定,预计.另外,年销售产品时需上交万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产两种产品的年利润与生产相应产品的件数之间的函数关系,并指明其定义域;
(2)如何投资才可获得最大年利润?请你做出规划.
当前题号:2 | 题型:解答题 | 难度:0.99
燕子每年秋天都要从北方到南方过冬,鸟类科学家发现,两岁燕子的飞行速度与耗氧量之间满足函数关系.若两岁燕子耗氧量达倒个单位时,其飞行速度为,则两岁燕子飞行速度为时,耗氧量达到__________单位.
当前题号:3 | 题型:填空题 | 难度:0.99
(本题满分12分) 已知函数的定义域为.
(Ⅰ)求集合;
(Ⅱ)若函数,且,求函数的最大最小值和对应的值;
当前题号:4 | 题型:解答题 | 难度:0.99
某种产品的成本是120元/件,试销阶段每件产品的售价x(元)与产品的日销售量y(件)之间的关系如下表所示:
x/元
130
150
165
y/件
70
50
35
 
若日销售量y是销售价x的一次函数,那么,要使每天所获得的利润最大,每件产品的销售价应定为多少元?此时每天的销售利润是多少?
当前题号:5 | 题型:解答题 | 难度:0.99
某化工厂生产的一种溶液,若初时含杂质2%,每过滤一次可使杂质含量减少.(已知:
(1)求杂质含量与过滤次数的函数关系式;
(2)按市场要求,杂质含量不能超过0.1%.问至少应过滤几次才能使产品达到市场要求?
当前题号:6 | 题型:解答题 | 难度:0.99
近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产(千部)手机,需另投入成本万元,且 ,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.
)求出2020年的利润(万元)关于年产量(千部)的函数关系式,(利润=销售额—成本);
2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?
当前题号:7 | 题型:解答题 | 难度:0.99
商品的销售价格与销售量密切相关,为更精准地为商品确定最终售价,商家对商品A按以下单价进行试售,得到部分的数据如下:
单价(元)





销量(件)





 
(1)求销量关于的线性回归方程;
(2)预计今后的销售中,销量与单价服从(1)中的线性回归方程,已知每件商品的成本是元,为了获得最大利润,商品的单价应定为多少元?(结果保留整数)
(参考数据:)(参考公式:
当前题号:8 | 题型:解答题 | 难度:0.99

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:元).

(Ⅰ)将y表示为x的函数;
(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
当前题号:9 | 题型:解答题 | 难度:0.99
2011年12月,某人的工资纳税额是元,若不考虑其他因素,则他该月工资收入为(   )
级数
全月应纳税所得额
税率(%)
1
不超过
3
2

10
 
注:本表所称全月应纳税所得额是以每月收入额减去(起征点)后的余额.
A.7000元B.7500元C.6600元D.5950元
当前题号:10 | 题型:单选题 | 难度:0.99