- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在热学中,物体在常温下的温度变化可以用牛顿冷却定律来描述,如果物体的初始温度是
,经过一定时间
后,温度
将满足
=
,其中
是环境温度,
称为半衰期.现有一杯用195F热水冲的速溶咖啡,放在75F的房间内,如果咖啡降到105F需要20分钟,问降温到95F需要多少分钟?(F为华氏温度单位,答案精确到0.1,参考数据:
)








“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度
(单位:千克/年)是养殖密度
(单位:尾/立方米)的函数.当
不超过4(尾/立方米)时,
的值为
(千克/年);当
时,
是
的一次函数;当
达到
(尾/立方米)时,因缺氧等原因,
的值为
(千克/年).
(1)当
时,求函数
的表达式;
(2)当养殖密度
为多大时,鱼的年生长量(单位:千克/立方米)
可以达到最大,并求出最大值.












(1)当


(2)当养殖密度


由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱,1个单位的固体碱在水中逐步溶化,水中的碱浓度
与时间
的关系,可近似地表示为
,只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.



(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.
从金山区走出去的陈驰博士,在《自然—可持续性》杂志上发表的论文中指出:地球正在变绿,中国通过植树造林和提高农业效率,在其中起到了主导地位.已知某种树木的高度
(单位:米)与生长年限
(单位:年,tÎN*)满足如下的逻辑斯蒂函数:
,其中e为自然对数的底数. 设该树栽下的时刻为0. 
(1)需要经过多少年,该树的高度才能超过5米?(精确到个位)
(2)在第几年内,该树长高最快?




(1)需要经过多少年,该树的高度才能超过5米?(精确到个位)
(2)在第几年内,该树长高最快?
某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系为
,若距离为1km时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f(x)为建造宿舍与修路费用之和.
(1)求f(x)的表达式
(2)宿舍应建在离工厂多远处,可使总费用f(x)最小并求最小值.

(1)求f(x)的表达式
(2)宿舍应建在离工厂多远处,可使总费用f(x)最小并求最小值.
已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:
为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;
(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.
![]() | 0 | 1 | 2 | 3 |
![]() | 0 | 0.7 | 1.6 | 3.3 |
为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;
(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.
近年来大气污染防治工作得到各级部门的重视,某企业在现有设备下每日生产总成本
(单位:万元)与日产量
(单位:吨)之间的函数关系式为
,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为
万元,除尘后当日产量
时,总成本
.
(1)求
的值;
(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?






(1)求

(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?
小张在淘宝网上开一家商店,他以10元每条的价格购进某品牌积压围巾2000条.定价前,小张先搜索了淘宝网上的其它网店,发现:
商店以30元每条的价格销售,平均每日销售量为10条;
商店以25元每条的价格销售,平均每日销售量为20条.假定这种围巾的销售量
(条)是售价
(元)
的一次函数,且各个商店间的售价、销售量等方面不会互相影响.
(1)试写出围巾销售每日的毛利润
(元)关于售价
(元)
的函数关系式(不必写出定义域),并帮助小张定价,使得每日的毛利润最高(每日的毛利润为每日卖出商品的进货价与销售价之间的差价);
(2)考虑到这批围巾的管理、仓储等费用为200元/天(只要围巾没有售完,均须支付200元/天,管理、仓储等费用与围巾数量无关),试问小张应该如何定价,使这批围巾的总利润最高(总利润=总毛利润-总管理、仓储等费用)?





(1)试写出围巾销售每日的毛利润



(2)考虑到这批围巾的管理、仓储等费用为200元/天(只要围巾没有售完,均须支付200元/天,管理、仓储等费用与围巾数量无关),试问小张应该如何定价,使这批围巾的总利润最高(总利润=总毛利润-总管理、仓储等费用)?
业界称“中国芯”迎来发展和投资元年,某芯片企业准备研发一款产品,研发启动时投入资金为
(
为常数)元,之后每年会投入一笔研发资金,
年后总投入资金记为
,经计算发现当
时,
近似地满足
,其中
为常数,
.已知
年后总投入资金为研发启动时投入资金的
倍.问
(1)研发启动多少年后,总投入资金是研发启动时投入资金的
倍;
(2)研发启动后第几年的投入资金的最多.











(1)研发启动多少年后,总投入资金是研发启动时投入资金的

(2)研发启动后第几年的投入资金的最多.