- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
我国某公司预估生产某款5G手机的每年固定成本为40万元,每生产1只还需另投入16元,设公司一年内共生产该款5G手机x万只并全部销售完,每万只的的售收入为
万元,且
(1)写出年利润y(万元)关于年产量x(万只)的函数解析式;
(2)当年产量为多少万只时,公司一年内所获利润最大?并求出最大利润.


(1)写出年利润y(万元)关于年产量x(万只)的函数解析式;
(2)当年产量为多少万只时,公司一年内所获利润最大?并求出最大利润.
某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族
中的成员仅以自驾或公交方式通勤,分析显示:当
中
的成员自驾时,自驾群体的人均通勤时间为
(单位:分钟),而公交群体的人均通勤时间不受
影响,恒为40分钟,试根据上述分析结果回答下列问题:
(1)当
在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族
的人均通勤时间
的表达式;并求
的最小值.





(1)当

(2)求该地上班族



某人根据经验绘制了2019年春节前后,从1月25日至2月11日自己种植的西红柿的销售量
千克
随时间
天
变化的函数图象,如图所示,则此人在1月31日大约卖出了______千克西红柿.
结果保留整数








近年来,我国自主研发的长征系列火箭的频频发射成功,标志着我国在该领域已逐步达到世界一流水平.火箭推进剂的质量为
,去除推进剂后的火箭有效载荷质量为
,火箭的飞行速度为
,初始速度为
,已知其关系式为齐奥尔科夫斯基公式:
,其中
是火箭发动机喷流相对火箭的速度,假设
,
,
,
是以
为底的自然对数,
,
.
(1)如果希望火箭飞行速度
分别达到第一宇宙速度
、第二宇宙速度
、第三宇宙速度
时,求
的值(精确到小数点后面1位).
(2)如果希望
达到
,但火箭起飞质量最大值为
,请问
的最小值为多少(精确到小数点后面1位)?由此指出其实际意义.













(1)如果希望火箭飞行速度





(2)如果希望




随着我国经济的不断发展,2019年年底某偏远地区农民人均年收入为3 000元,预计该地区今后农民的人均年收入将以每年6%的年平均增长率增长,那么2026年年底该地区的农民人均年收入为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
某公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比例,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).
(1)分别将A、B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?
(1)分别将A、B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?

某种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:
则下列函数模型中,能较好地反映计算机在第
天被感染的数量
与
之间的关系的是
第![]() | 1 | 2 | 3 | 4 | 5 |
被感染的计算机数量![]() | 10 | 20 | 39 | 81 | 160 |
则下列函数模型中,能较好地反映计算机在第



A.![]() | B.![]() |
C.![]() | D.![]() |
候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为v=a+blog3
(其中a,b是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.
(1)求出a,b的值;
(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?

(1)求出a,b的值;
(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?
某体育用品商场经营一批进价为40元的运动服,经市场调查发现销售量y(件)与销售单价x(元)符合一次函数模型,且销售单价为60元时,销量是600件;当销售单价为64元时,销量是560件.
(1)写出销售量y(件)与销售单价x(元)之间的函数关系式
;
(2)试求销售利润z(元)与销售单价x(元)之间的函数关系式;
(3)在(1)(2)条件下,当销售单价为多少元时,商场能获得最大利润?并求出此最大利润.
(1)写出销售量y(件)与销售单价x(元)之间的函数关系式

(2)试求销售利润z(元)与销售单价x(元)之间的函数关系式;
(3)在(1)(2)条件下,当销售单价为多少元时,商场能获得最大利润?并求出此最大利润.
2019年某开发区一家汽车生产企业计划引进一批新能源汽车制造设备,通过市场分析,全年需投入固定成本3000万元,每生产x(百辆),需另投入成本
万元,且
,由市场调研知,每辆车售价6万元,且全年内生产的车辆当年能全部销售完.
(1)求出2019年的利润
(万元)关于年产量x(百辆)的函数关系式;(利润=销售额
成本)
(2)2019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.


(1)求出2019年的利润


(2)2019年产量为多少(百辆)时,企业所获利润最大?并求出最大利润.