- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某产品的总成本C与年产量Q之间的关系为C=aQ2+3000,其中a为常数,且当年产量为200 时,总成本为15000. 记该产品的平均成本为f(Q)(平均成本 =
),则当Q =________., f(Q) 取得最小值,这个最小值为________.

为了缓解交通压力,某省在两个城市之间特修一条专用铁路,用一列火车作为公共交通车.已知每日来回趟数y是每次拖挂车厢节数x的一次函数,如果该列火车每次拖4节车厢,每日能来回16趟;如果每次拖6节车厢,则每日能来回10趟,火车每日每次拖挂车厢的节数是相同的,每节车厢满载时能载客110人.
(1)求出y关于x的函数;
(2)该火车满载时每次拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数?
(1)求出y关于x的函数;
(2)该火车满载时每次拖挂多少节车厢才能使每日营运人数最多?并求出每天最多的营运人数?
某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.

(1)写出第一次服药后,y与t之间的函数关系式y=f(t);
(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?

(1)写出第一次服药后,y与t之间的函数关系式y=f(t);
(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?
某生物研究者于元旦在湖中放入一些凤眼莲,这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲覆盖面积为
,三月底测得凤眼莲覆盖面积为
,凤眼莲覆盖面积
(单位:
)与月份
(单位:月)的关系有两个函数模型
与
可供选择.
(1)试判断哪个函数模型更合适并求出该模型的解析式;
(2)求凤眼莲覆盖面积是元旦放入面积
倍以上的最小月份.
(参考数据
,
)







(1)试判断哪个函数模型更合适并求出该模型的解析式;
(2)求凤眼莲覆盖面积是元旦放入面积

(参考数据


中国高铁的快速发展给群众出行带来巨大便利,极大促进了区域经济社会发展.已知某条高铁线路通车后,发车时间间隔
(单位:分钟)满足
,经测算,高铁的载客量与发车时间间隔
相关:当
时高铁为满载状态,载客量为
人;当
时,载客量会在满载基础上减少,减少的人数与
成正比,且发车时间间隔为
分钟时的载客量为
人.记发车间隔为
分钟时,高铁载客量为
.
求
的表达式;
若该线路发车时间间隔为
分钟时的净收益
(元),当发车时间间隔为多少时,单位时间的净收益
最大?

















某工厂生产甲、乙两种产品所得利润分别为P和Q(万元),它们与投入资金m(万元)的关系有如下公式:
,
,今将200万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投入资金都不低于25万元.
(Ⅰ)设对乙种产品投入资金x(万元),求总利润y(万元)关于x的函数关系式及其定义域;
(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.


(Ⅰ)设对乙种产品投入资金x(万元),求总利润y(万元)关于x的函数关系式及其定义域;
(Ⅱ)如何分配投入资金,才能使总利润最大,并求出最大总利润.
为了提高职工的工作积极性,在工资不变的情况下,某企业给职工两种追加奖励性绩效奖金的方案:第一种方案是每年年末(12月底)追加绩效奖金一次,第一年末追加的绩效奖金为
万元,以后每次所追加的绩效奖金比上次所追加的绩效奖金多
万元;第二种方案是每半年(6月底和12月底)各追加绩效奖金一次,第一年的6月底追加的绩效奖金为
万元,以后每次所追加的绩效奖金比上次所追加的绩效奖金多
万元.
假设你准备在该企业工作
年,根据上述方案,试问:
(1)如果你在该公司只工作2年,你将选择哪一种追加绩效奖金的方案?请说明理由.
(2)如果选择第二种追加绩效奖金的方案比选择第一种方案的奖金总额多,你至少在该企业工作几年?
(3)如果把第二种方案中的每半年追加
万元改成每半年追加
万元,那么
在什么范围内取值时,选择第二种方案的绩效奖金总额总是比选择第一种方案多?




假设你准备在该企业工作

(1)如果你在该公司只工作2年,你将选择哪一种追加绩效奖金的方案?请说明理由.
(2)如果选择第二种追加绩效奖金的方案比选择第一种方案的奖金总额多,你至少在该企业工作几年?
(3)如果把第二种方案中的每半年追加



如下图所示,某窑洞窗口形状上部是圆弧
,下部是一个矩形
,圆弧
所在圆的圆心为O,经测量
米,
米,
,现根据需要把此窑洞窗口形状改造为矩形
,其中E,F在边
上,G,H在圆弧
上.设
,矩形
的面积为S.


(1)求矩形
的面积S关于变量
的函数关系式;
(2)求
为何值时,矩形
的面积S最大?













(1)求矩形


(2)求


某公司现有A、B两种产品考虑投资,它们的投资金额x与利润y(单位均为百万元)分别满足函数关系式:
(其中a、b均为常数).已知当对A、B投资金额均为3百万时,所获得A、B的利润均为6百万元,目前公司计划对A、B产品总共投资8百万元,两种产品都要投资.
(1)若对A产品投资x百万元,试求投资A、B产品获得的总利润f(x)(单位:百万元);
(2)试求当A产品投资多少时,总利润达到最大值,并求出最大值.

(1)若对A产品投资x百万元,试求投资A、B产品获得的总利润f(x)(单位:百万元);
(2)试求当A产品投资多少时,总利润达到最大值,并求出最大值.
如图所示,
是一个矩形花坛,其中
米,
米.现将矩形花坛
扩建成一个更大的矩形花坛
,要求:
在
上,
在
上,对角线
过
点,且矩形
的面积小于150平方米.

(1)设
长为
米,矩形
的面积为
平方米,试用解析式将
表示成
的函数,并确定函数的定义域;
(2)当
的长度是多少时,矩形
的面积最小?并求最小面积.













(1)设






(2)当

