- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
10辆货车从A站匀速驶往相距2000千米的B站,其时速都是v千米/小时,为安全起见,要求:每辆车时速不得超过100千米/小时,每辆货车间隔kv2千米(k为常数,货车长度忽略不计).将第一辆货车由A出发到最后一辆货车到达B站所需时间t表示为v的函数f(v).
(1)求t=f(v),并写出v的取值范围;
(2)若k=
请问,当v取何值时,t有最小值?并求出最小值.
(1)求t=f(v),并写出v的取值范围;
(2)若k=

在某单位的职工食堂中,食堂每天以
元/个的价格从面包店购进面包,然后以
元/个的价格出售.如果当天卖不完,剩下的面包以
元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了
个面包,以
(单位:个,
)表示面包的需求量,
(单位:元)表示利润.

(1)求
关于
的函数解析式;
(2)根据直方图估计利润
不少于
元的概率.








(1)求


(2)根据直方图估计利润


某企业今年初用72万元购买一套新设备用于生产,该设备第一年需各种费用12万元,从第二年起,每年所需费用均比上一年增加4万元,该设备每年的总收入为50万元,设生产x年的 盈利总额为y万元.写出y与x的关系式;
①经过几年生产,盈利总额达到最大值?最大值为多少?
②经过几年生产,年平均盈利达到最大值?最大值为多少
①经过几年生产,盈利总额达到最大值?最大值为多少?
②经过几年生产,年平均盈利达到最大值?最大值为多少
随着经济的发展,个人收入的提高.自2018年10月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

(1)假如小李某月的工资、薪金等所得税前收入总和不高于8000元,记
表示总收入,y表示应纳的税,试写出调整前后y关于
的函数表达式;
(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

先从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;
(3)小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少?

(1)假如小李某月的工资、薪金等所得税前收入总和不高于8000元,记


(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

先从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;
(3)小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少?
已知正方形ABCD的边长为2,有一动点M从点B出发沿正方形的边运动,路线是B
C
D
A,设点M经过的路程为x,△ABM的面积为S.求函数S=f(x)的解析式及其定义域. 




列车从A地出发直达500 km外的B地,途中要经过离A地200 km的C地。假设列车匀速前进,5 h后从A地到达B地,
(1) 求列车的行驶速度;并建立列车与C地的距离s(单位:km)关于时间t(单位:h)的函数关系s = f (t);
(2)在给定的坐标系中画出函数s = f (t)的图象。
(1) 求列车的行驶速度;并建立列车与C地的距离s(单位:km)关于时间t(单位:h)的函数关系s = f (t);
(2)在给定的坐标系中画出函数s = f (t)的图象。
一辆汽车在某段路程中的行驶速度与时间的关系如下图:

(Ⅰ)求图中阴影部分的面积,并说明所求面积的实际意义;
(Ⅱ)假设这辆汽车的里程表在汽车行驶这段路程前的读数为
,试将汽车行驶这段路程时汽车里程表读数
表示为时间
的函数,并求出当汽车里程表读数为
时,汽车行驶了多少时间?

(Ⅰ)求图中阴影部分的面积,并说明所求面积的实际意义;
(Ⅱ)假设这辆汽车的里程表在汽车行驶这段路程前的读数为




已知计算机的成本不断降低,若每隔3年计算机价格降低
,现在价格为8100元的计算机,9年后的价格可降为( )

A.2400元 | B.900元 | C.300元 | D.3600元 |
某专营店经销某商品,当售价不高于10元时,每天能销售100件,当价格高于10元时,每提高1元,销量减少3件,若该专营店每日费用支出为500元,用x表示该商品定价,y表示该专营店一天的净收入(除去每日的费用支出后的收入).
(1)把y表示成x的函数;
(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.
(1)把y表示成x的函数;
(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:万元)对年销售量y(单位:t)的影响,对近6年的年宣传费xi和年销售量yi(i=1,2,…,6)进行整理,得数据如表所示:
根据表数据,下列函数中,适宜作为年销售量y关于年宣传费x的拟合函数的是( )
x | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
| 1.65 | 2.20 | 2.60 | 2.76 | 2.90 | 3.10 |
根据表数据,下列函数中,适宜作为年销售量y关于年宣传费x的拟合函数的是( )
A.![]() | B.![]() | C.![]() | D.![]() |