- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
首届中国国际进口博览会于2018年11月5日至10日在上海的国家会展中心举办.国家展、企业展、经贸论坛、高新产品汇集……首届进博会高点纷呈.一个更加开放和自信的中国,正用实际行动为世界构筑共同发展平台,展现推动全球贸易与合作的中国方案.
(万美元)关于年产量
(万台)的函数解析式;(利润=销售收入-成本)
(2)当年产量为多少万台时,该公司获得的利润最大?并求出最大利润.
某跨国公司带来了高端智能家居产品参展,供购商洽谈采购,并决定大量投放中国市场.已知该产品年固定研发成本30万美元,每生产一台需另投入90美元.设该公司一年内生产该产品万台且全部售完,每万台的销售收入为
万美元,


(2)当年产量为多少万台时,该公司获得的利润最大?并求出最大利润.
某工艺品厂要生产如图所示的一种工艺品,该工艺品由一个实心圆柱体和一个实心半球体组成,要求半球的半径和圆柱的底面半径之比为
,工艺品的体积为
。现设圆柱的底面半径为
,工艺品的表面积为
,半球与圆柱的接触面积忽略不计。

(1)试写出
关于
的函数关系式并求出
的取值范围;
(2)怎样设计才能使工艺品的表面积最小?并求出最小值。
参考公式:球体积公式:
;球表面积公式:
,其中
为球半径.





(1)试写出



(2)怎样设计才能使工艺品的表面积最小?并求出最小值。
参考公式:球体积公式:



某食品的保鲜时间t(单位:小时)与储藏温度x(单位:℃)满足函数关系
且该食品在4℃的保鲜时间是16小时.
已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:

①该食品在6℃的保鲜时间是8小时;
②当x∈[﹣6,6]时,该食品的保鲜时间t随着x增大而逐渐减少;
③到了此日13时,甲所购买的食品还在保鲜时间内;
④到了此日14时,甲所购买的食品已然过了保鲜时间.
其中,所有正确结论的序号是 .

已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:

①该食品在6℃的保鲜时间是8小时;
②当x∈[﹣6,6]时,该食品的保鲜时间t随着x增大而逐渐减少;
③到了此日13时,甲所购买的食品还在保鲜时间内;
④到了此日14时,甲所购买的食品已然过了保鲜时间.
其中,所有正确结论的序号是 .
某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系式C=4+x,每日的销售额S(单位:万元)与日产量x满足函数关系式
S=
,已知每日的利润L=S﹣C,且当x=4时,L=7.
(1)求k;
(2)当日产量为多少吨时,每日的利润可以达到最大?并求此最大值.
S=

(1)求k;
(2)当日产量为多少吨时,每日的利润可以达到最大?并求此最大值.
某工厂加工一批零件,加工过程中会产生次品,根据经验可知,其次品率
与日产量
(万件)之间满足函数关系式
,已知每生产1万件合格品可获利2万元,但生产1万件次品将亏损1万元.(次品率=次品数/生产量).
(1)试写出加工这批零件的日盈利额
(万元)与日产量
(万件)的函数;
(2)当日产量为多少时,可获得最大利润?最大利润为多少?



(1)试写出加工这批零件的日盈利额


(2)当日产量为多少时,可获得最大利润?最大利润为多少?
根据市场调查,某型号的空气净化器有如下的统计规律,每生产该型号空气净化器
(百台),其总成本为
(万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入
(万元)满足
,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(Ⅰ)求利润函数
的解析式(利润=销售收入-总成本);
(Ⅱ)假定你是工厂老板,你该如何决定该产品生产的数量?




(Ⅰ)求利润函数

(Ⅱ)假定你是工厂老板,你该如何决定该产品生产的数量?
共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数
,其中
是新样式单车的月产量(单位:件),利润
总收益
总成本.
(1)试将自行车厂的利润
元表示为月产量
的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?





(1)试将自行车厂的利润


(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?
用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________.