- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
秸秆还田是当今世界上普通重视的一项培肥地力的增产措施,在杜绝了秸秆焚烧所造成的大气污染的同时还有增肥增产作用.某农机户为了达到在收割的同时让秸秆还田,花
元购买了一台新型联合收割机,每年用于收割可以收入
万元(已减去所用柴油费);该收割机每年都要定期进行维修保养,第一年由厂方免费维修保养,第二年及以后由该农机户付费维修保养,所付费用
(元)与使用年数
的关系为:
,已知第二年付费
元,第五年付费
元.
(1)试求出该农机户用于维修保养的费用
(元)与使用年数
的函数关系;
(2)这台收割机使用多少年,可使平均收益最大?(收益=收入-维修保养费用-购买机械费用)







(1)试求出该农机户用于维修保养的费用


(2)这台收割机使用多少年,可使平均收益最大?(收益=收入-维修保养费用-购买机械费用)
已知
、
两地相距
千米,某人开汽车以
千米/小时的速度从
到达
地,在
地停留
小时后再以
千米/小时的速度返回
地,把汽车离开
地的距离
表示为时间
的函数,表达式为__________.













某公司为了实现
万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到
万元时,按销售利润进行奖励,且奖金
(单位:万元)随销售利润
(单位:万元)的增加而增加,但奖金总数不超过
万元,同时奖金不超过利润的
,则在所给
个函数模型中,能符合公司的要求的为( ).(
)








A.![]() | B.![]() | C.![]() | D.![]() |
随着我国经济模式的改变,电商已成为当今城乡种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出
吨该商品可获利润
万元,未售出的商品,每吨亏损
万元根据往年的销售资料,得到该商品一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了
吨该商品,现以
单位:吨,
)表示下一个销售季度的市场需求量,
(单位:万 元)表示该电商下“个销售季度内经销该商品获得的利润.

(1)视
分布在各区间内的频率为相应的概率,求
;
(2)将
表示为
的函数,求出该函数表达式;
(3)在频率分布直方图的市场需求量分组中,若以市场需求量落入该区间的频率作为市场需求量的概率,求该季度利润不超过
万元的概率.








(1)视


(2)将


(3)在频率分布直方图的市场需求量分组中,若以市场需求量落入该区间的频率作为市场需求量的概率,求该季度利润不超过

某投资公司计划投资
两种金融产品,根据市场调查与预测,
产品的利润
与投资金额
的函数关系为
,
产品的利润
与投资金额
的函数关系为
(注:利润与投资金额单位:万元).
(1)该公司现有100万元资金,并计划全部投入
两种产品中,其中
万元资金投入
产品,试把
两种产品利润总和
表示为
的函数,并写出定义域;
(2)怎样分配这100万元资金,才能使公司的利润总和
获得最大?其最大利润总和为多少万元.









(1)该公司现有100万元资金,并计划全部投入






(2)怎样分配这100万元资金,才能使公司的利润总和

某种商品,原来定价每件
元,每月能卖出
件.若定价上涨
元,且
,则每月卖出数量将减少
件,且
,而售货金额变成原来的
倍.
(1)若
,求使
时,
的取值范围;
(2)设
,其中
为常数,且
,用
来表示当售货金额最大时的
值.







(1)若



(2)设





现行的个税法修正案规定:个税免征额由原来的2000元提高到3500元,并给出了新的个人所得税税率表:
例如某人的月工资收入为5000元,那么他应纳个人所得税为:
(元).
(Ⅰ)若甲的月工资收入为6000元,求甲应纳的个人收的税;
(Ⅱ)设乙的月工资收入为
元,应纳个人所得税为
元,求
关于
的函数;
(Ⅲ)若丙某月应纳的个人所得税为1000元,给出丙的月工资收入.(结论不要求证明)
全月应纳税所得额 | 税率 |
不超过1500元的部分 | 3% |
超过1500元至4500元的部分 | 10% |
超过4500元至9000元的部分 | 20% |
超过9000元至35000元的部分 | 25% |
…… | … |
例如某人的月工资收入为5000元,那么他应纳个人所得税为:

(Ⅰ)若甲的月工资收入为6000元,求甲应纳的个人收的税;
(Ⅱ)设乙的月工资收入为




(Ⅲ)若丙某月应纳的个人所得税为1000元,给出丙的月工资收入.(结论不要求证明)
为了鼓励市民节约用电,实行“阶梯式”电价,某边远山区每户居民月用电量划分为三档:月用电量不超过150度,按0.6元/度收费,超过150度但不超过250度的部分每度加价0.1元,超过250度的部分每度再加价0.3元收费.
(1)求该边远山区某户居民月用电费用
(单位:元)关于月用电量
(单位:度)的函数解析式;
(2)已知该边远山区贫困户的月用电量
(单位:度)与该户长期居住的人口数
(单位:人)间近似地满足线性相关关系:
(
的值精确到整数),其数据如表:
现政府为减轻贫困家庭的经济负担,计划对该边远山区的贫困家庭进行一定的经济补偿,给出两种补偿方案供选择:一是根据该家庭人数,每人每户月补偿6元;二是根据用电量每人每月补偿
(
为用电量)元,请根据家庭人数
分析,一个贫困家庭选择哪种补偿方式可以获得更多的补偿?
附:回归直线
中斜率和截距的最小二乘法估计公式分别为:
,
.
参考数据:
,
,
,
,
,
,
,
,
.
(1)求该边远山区某户居民月用电费用


(2)已知该边远山区贫困户的月用电量




![]() | 14 | 15 | 17 | 18 |
![]() | 161 | 168 | 191 | 200 |
现政府为减轻贫困家庭的经济负担,计划对该边远山区的贫困家庭进行一定的经济补偿,给出两种补偿方案供选择:一是根据该家庭人数,每人每户月补偿6元;二是根据用电量每人每月补偿



附:回归直线



参考数据:









如图,在一个水平面内,河流的两岸平行,河宽1(单位:千米)村庄
和供电站
恰位于一个边长为2(单位:千米)的等边三角形的三个顶点处,且
位于河流的两岸,村庄
侧的河岸所在直线恰经过
的中点
.现欲在河岸上
之间取一点
,分别修建电缆
和
,
.设
,记电缆总长度为
(单位:千米).

(1)求
的解析式;
(2)当
为多大时,电缆的总长度
最小,并求出最小值.














(1)求

(2)当


大学毕业生小王相应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件,市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月多卖20件,为获得更大的利润,现将饰品售价调整为
(元/件)(
即售价上涨,
即售价下降),每月饰品销售为
(件),月利润为
(元).
(1)直接写出
与
之间的函数关系式;
(2)如何确定销售价格才能使月利润最大?求最大月利润;
(3)为了使每月利润不少于6000元,应如何控制销售价格?





(1)直接写出


(2)如何确定销售价格才能使月利润最大?求最大月利润;
(3)为了使每月利润不少于6000元,应如何控制销售价格?