- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).

(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?





(1)求


(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为





某公司引进一条价值30万元的产品生产线,经过预测和计算,得到生产成本降低
万元与技术改造投入
万元之间满足:①
与
和
的乘积成正比;②当
时,
,并且技术改造投入比率
,
为常数且
.
(1)求
的解析式及其定义域;
(2)求
的最大值及相应的
值.










(1)求

(2)求


将
名学生分成
两组参加城市绿化活动,其中
组布置
盆盆景,
组种植
棵树苗.根据历年统计,每名学生每小时能够布置
盆盆景或者种植
棵树苗.设布置盆景的学生有
人,布置完盆景所需要的时间为
,其余学生种植树苗所需要的时间为
(单位:小时,可不为整数).
⑴写出
、
的解析式;
⑵比较
、
的大小,并写出这
名学生完成总任务的时间
的解析式;
⑶应怎样分配学生,才能使得完成总任务的时间最少?











⑴写出


⑵比较




⑶应怎样分配学生,才能使得完成总任务的时间最少?
如图,直线
与单位圆相切于点
,射线
从
出发,绕着点
逆时针旋转,在旋转的过程中,记
(
),
所经过的单位圆
内区域(阴影部分)的面积为
,记
,则下列选项判断正确的是( )













A.当![]() ![]() |
B.对任意![]() ![]() ![]() |
C.对任意![]() ![]() |
D.对任意![]() ![]() |