- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
有时可用函数
,描述学习某学科知识的掌握程度,其中
表示某学科知识的学习次数(
),
表示对该学科知识的掌握程度,正实数
与学科知识有关.
(1) 证明:当
时,掌握程度的增加量
总是下降;
(2) 根据经验,学科甲,乙,丙对应的
的取值区间分别为
,
,
,当学习某学科知识5次时,掌握程度是
,请确定相应的学科.
(参考数据:
,
,
)





(1) 证明:当


(2) 根据经验,学科甲,乙,丙对应的





(参考数据:



如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是
.
用宽
(单位
)表示所建造的每间熊猫居室的面积
(单位
);
怎么设计才能使所建造的每间熊猫居室面积最大?并求出每间熊猫居室的最大面积?








对于函数
与
,若存在
,
,使得
,则称函数
与
互为“零点密切函数”,现已知函数
与
互为“零点密切函数”,则实数
的取值范围是__________.










某市由甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时5元;乙家按月计费,一个月中
小时以内(含
小时)每张球台
元,超过
小时的部分每张球台每小时
元.某公司准备下个月从两家中的一家租一张球台开展活动,活动时间不少于
小时,也不超过
小时,设在甲家租一张球台开展活动
小时的收费为
元,在乙家租一张球台开展活动
小时的收费为
元.
(1)试分别写出
与
的解析式;
(2)选择哪家比较合算?请说明理由.











(1)试分别写出


(2)选择哪家比较合算?请说明理由.
在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)﹣f(x).已知某服装公司每天最多
生产100件.生产x件的收入函数为R(x)=300x﹣2x2(单位元),其成本函数为C(x)=50x+300(单位:元),利润等于收入与成本之差.
(1)求出利润函数p(x)及其边际利润函数Mp(x);
(2)分别求利润函数p(x)及其边际利润函数Mp(x)的最大值;
(3)你认为本题中边际利润函数Mp(x)最大值的实际意义是什么?
生产100件.生产x件的收入函数为R(x)=300x﹣2x2(单位元),其成本函数为C(x)=50x+300(单位:元),利润等于收入与成本之差.
(1)求出利润函数p(x)及其边际利润函数Mp(x);
(2)分别求利润函数p(x)及其边际利润函数Mp(x)的最大值;
(3)你认为本题中边际利润函数Mp(x)最大值的实际意义是什么?