- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一种产品的成本是a元.今后m(m∈N*)年内,计划使成本平均每年比上一年降低p%,成本y是经过年数x的函数(0<x<m,且x∈N*),其关系式为
A.y=a(1+p%)x | B.y=a(1–p%)x | C.y=a(p%)x | D.y=a–(p%)x |
某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km但不超过8km时,超过部分按每千米2.15元收费:超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是( )
A.出租车行驶2km,乘客需付费8元 |
B.出租车行驶4km,乘客需付费9.6元 |
C.出租车行驶10km,乘客需付费25.45元 |
D.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用 |
E.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km |
如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么要达到国民经济生产总值比1995年翻两番的年份大约是(lg2=0.301 0,lg3=0.477 1,lg109=2.037 4,lg0.09=-2.954 3)( )
A.2015年 | B.2011年 |
C.2010年 | D.2008年 |
某购物网站在2017年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为( )
A.1 | B.2 |
C.3 | D.4 |
衣柜里的樟脑丸,随着时间会挥发,从而体积缩小,刚放入的新樟脑丸体积为a,经过t天后樟脑丸的体积V(t)与天数t的关系式为V(t)=a·e–kt,若新樟脑丸经过80天后,体积变为
a,则函数V(t)的解析式为________.

《国务院关于修改〈中华人民共和国个人所得税法实施条例〉的决定》已于2008年3月1日起施行,个人所得税税率表如下:
注:本表所示全月应纳税所得额为每月收入额减去2 000元后的余额.
(1)若某人2008年4月份的收入额为4 200元,求该人本月应纳税所得额和应纳的税费;
(2)设个人的月收入额为x元,应纳的税费为y元.当0<x≤3 600时,试写出y关于x的函数关系式.
级数 | 全月应纳税所得额 | 税率 |
1 | 不超过500元的部分 | 5% |
2 | 超过500至2 000元的部分 | 10% |
3 | 超过2 000元至5 000元的部分 | 15% |
… | … | … |
9 | 超过100 000元的部分 | 45% |
注:本表所示全月应纳税所得额为每月收入额减去2 000元后的余额.
(1)若某人2008年4月份的收入额为4 200元,求该人本月应纳税所得额和应纳的税费;
(2)设个人的月收入额为x元,应纳的税费为y元.当0<x≤3 600时,试写出y关于x的函数关系式.
已知某服装厂生产某种品牌的衣服,销售量
(单位:百件)关于每件衣服的利润
(单位:元)的函数解析式为
, 则当该服装厂所获效益最大时,
( )




A.20 | B.60 | C.80 | D.40 |
某花店每天以每枝
元的价格从农场购进若干枝玫瑰花,然后以每枝
元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(1)若花店一天购进
枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(2)花店记录了
天玫瑰花的日需求量(单位:枝),整理得下表:
假设花店在这
天内每天购进
枝玫瑰花,求这
天的日利润(单位:元)的平均数.


(1)若花店一天购进




(2)花店记录了

日需求量![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
假设花店在这



有一位商人,从北京向上海的家中打电话,通话m分钟的电话费由函数f(m)=1.06×(0.5[m]+1)(元)决定,其中m>0,[m]是大于或等于m的最小整数.则从北京到上海通话时间为5.5分钟的电话费为________元.
有关部门计划于2017年向某市投入128辆电力型公交车,且随后电力型公交车每年的投入量比上一年增加50%,试问,该市在2023年应投入多少辆电力型公交车?