- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某电器专卖店销售某种型号的空调,记第
天(
,
)的日销售量为
(单位;台).函数
图象中的点分别在两条直线上,如图,该两直线交点的横坐标为
,已知
时,函数
.

(1)当
时,求函数
的解析式;
(2)求
的值及该店前
天此型号空调的销售总量;
(3)按照经验判断,当该店此型号空调的销售总量达到或超过
台,且日销售量仍持续增加时,该型号空调开始旺销,问该店此型号空调销售到第几天时,才可被认为开始旺销?









(1)当


(2)求


(3)按照经验判断,当该店此型号空调的销售总量达到或超过

已知A,B两地相距24km.甲车、乙车先后从A地出发匀速驶向B地.甲车从A地到B地需行驶25min;乙车从A地到B地需行驶20min.乙车比甲车晚出发2min.
(1)分别写出甲、乙两车所行路程关于甲车行驶时间的函数关系式;
(2)甲、乙两车何时在途中相遇?相遇时距A地多远?
(1)分别写出甲、乙两车所行路程关于甲车行驶时间的函数关系式;
(2)甲、乙两车何时在途中相遇?相遇时距A地多远?
攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y(y值越大产品的性能越好)与这种新合金材料的含量x(单位:克)的关系为:当0≤x<7时,y是x的二次函数;当x≥7时,
.测得部分数据如表:

(1)求y关于x的函数关系式y=f(x);
(2)求该新合金材料的含量x为何值时产品的性能达到最佳.


(1)求y关于x的函数关系式y=f(x);
(2)求该新合金材料的含量x为何值时产品的性能达到最佳.