- 集合与常用逻辑用语
- 函数与导数
- + 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知二次函数f(x)=ax2+bx+c(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤
(x+2)2成立.
(1)证明:f(2)=2;
(2)若f(-2)=0,求f(x)的表达式;
(3)设g(x)=f(x)-
x,x∈[0,+∞),若g(x)图象上的点都位于直线y=
的上方,求实数m的取值范围.

(1)证明:f(2)=2;
(2)若f(-2)=0,求f(x)的表达式;
(3)设g(x)=f(x)-


设a,b,c是△ABC的三条边长,对任意实数x,f(x)=b2x2+(b2+c2-a2)x+c2,有( )
A.f(x)=0 | B.f(x)>0 | C.f(x)≤0 | D.f(x)<0 |