- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- + 一次函数与二次函数
- 二次函数的概念
- 二次函数的性质与图象
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数
与听课时间
(单位:分钟)之间的关系满足如图所示的图象,当
时,图象是二次函数图象的一部分,其中顶点
,过点
;当
时,图象是线段
,其中
.根据专家研究,当注意力指数大于62时,学习效果最佳.

(Ⅰ)试求
的函数关系式;
(Ⅱ)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.









(Ⅰ)试求

(Ⅱ)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(1)当a=﹣1时,求函数f(x)的最大值和最小值;
(2)记函数f(x)的最小值为g(a),求g(a)的表达式.
(1)当a=﹣1时,求函数f(x)的最大值和最小值;
(2)记函数f(x)的最小值为g(a),求g(a)的表达式.
定义
ad﹣bc,已知函数f(x)
(x∈[0,π]),若f(x)的最大值与最小值的和为1,则实数m的值是( )


A.4+2![]() ![]() | B.4﹣2![]() ![]() |
C.4﹣2![]() | D.﹣4+2![]() |
已知函数
,若在定义域内存在
,使得
成立,则称
为函数
的局部对称点.
(1)若
、
且
,证明:函数
必有局部对称点;
(2)若函数
在区间
内有局部对称点,求实数
的取值范围;
(3)若函数
在
上有局部对称点,求实数
的取值范围.





(1)若




(2)若函数



(3)若函数


