- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- + 一次函数与二次函数
- 二次函数的概念
- 二次函数的性质与图象
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设常数
,函数
.
(1) 若
,求
的单调递减区间;
(2) 若
为奇函数,且关于
的不等式
对所有的
恒成立,求实数
的取值范围;
(3) 当
时,若方程
有三个不相等的实数根
、
、
,且
,求实数
的值.


(1) 若


(2) 若





(3) 当







若函数f(x)在R上可导,且f(x)=x2+2f′(2)x+m,则( )
A.f(0)<f(5) | B.f(0)=f(5) |
C.f(0)>f(5) | D.f(0)≥f(5) |
抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,且位于x轴下方.
(1)如下图,若P(1,-3)、B(4,0),① 求该抛物线的解析式;② 若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;

(2) 如下图,在图中的抛物线解析式不变的条件下,已知直线PA、PB与y轴分别交于E、F两点.当点P运动时,OE+OF是否为定值?若是,试求出该定值;若不是,请说明理由.
(1)如下图,若P(1,-3)、B(4,0),① 求该抛物线的解析式;② 若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;

(2) 如下图,在图中的抛物线解析式不变的条件下,已知直线PA、PB与y轴分别交于E、F两点.当点P运动时,OE+OF是否为定值?若是,试求出该定值;若不是,请说明理由.
