- 集合与常用逻辑用语
- 函数与导数
- 判断函数的对称性
- 由对称性求函数的解析式
- 由对称性研究单调性
- + 函数对称性的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于定义在
上的函数
,下述结论正确的是( )


A.若![]() ![]() |
B.若函数![]() ![]() ![]() |
C.若对任意![]() ![]() ![]() ![]() |
D.若函数![]() ![]() ![]() ![]() |
已知函数
为奇函数.
(1)求常数
的值;
(2)判断并用定义法证明函数的单调性;
(3)函数
的图象由函数
的图象先向右平移
个单位,再向上平移
个单位得到,写出
的一个对称中心,若
,求
的值.

(1)求常数

(2)判断并用定义法证明函数的单调性;
(3)函数






