- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- + 函数的对称性
- 判断函数的对称性
- 由对称性求函数的解析式
- 由对称性研究单调性
- 函数对称性的应用
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
(
且
)有下列四个结论.
①恒过定点;
②
是奇函数;
③当
时,
的解集为
;
④若
,
,那么
.
其中正确的结论是__________(请将所有正确结论的序号都填在横线上).



①恒过定点;
②

③当



④若



其中正确的结论是__________(请将所有正确结论的序号都填在横线上).
对于三次函数
,给出定义:设
是函数
的导数,
是函数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数
,请你根据上面的探究结果,解答以下问题:
①函数
的对称中心坐标为______;
②计算
________.










①函数

②计算
