- 集合与常用逻辑用语
- 函数与导数
- 函数的周期性的定义与求解
- 由周期性求函数的解析式
- 函数周期性的应用
- + 判断抽象函数的周期性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义在
上的函数
满足:对任意的实数
,存在非零常数
,都有
成立.
(1)若函数
,求实数
和
的值;
(2)当
时,若
,
,求函数
在闭区间
上的值域;
(3)设函数
的值域为
,证明:函数
为周期函数.





(1)若函数



(2)当





(3)设函数



已知定义域为
的函数
满足:对任何
,都有
,且当
时,
,在下列结论中,正确命题的序号是________
① 对任何
,都有
;② 函数
的值域是
;
③ 存在
,使得
;④ “函数
在区间
上单调递减”的充要条
件是“存在
,使得
”;






① 对任何




③ 存在




件是“存在

