- 集合与常用逻辑用语
- 函数与导数
- 函数的周期性的定义与求解
- 由周期性求函数的解析式
- 函数周期性的应用
- + 判断抽象函数的周期性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)若
满足
为
上奇函数且
为
上偶函数,求
的值;
(2)若函数
满足
对
恒成立,函数
,求证:函数
是周期函数,并写出
的一个正周期;
(3)对于函数
,
,若
对
恒成立,则称函数
是“广义周期函数”,
是其一个广义周期,若二次函数
的广义周期为
(
不恒成立),试利用广义周期函数定义证明:对任意的
,
,
成立的充要条件是
.


(1)若






(2)若函数







(3)对于函数














给出集合
(1)若
求证:函数
(2)由(1)可知,
是周期函数且是奇函数,于是张三同学得出两个命题:
命题甲:集合M中的元素都是周期函数;命题乙:集合M中的元素都是奇函数,请对此给出判断,如果正确,请证明;如果不正确,请举出反例;
(3)设
为常数,且
求
的充要条件并给出证明.

(1)若


(2)由(1)可知,

命题甲:集合M中的元素都是周期函数;命题乙:集合M中的元素都是奇函数,请对此给出判断,如果正确,请证明;如果不正确,请举出反例;
(3)设


