- 集合与常用逻辑用语
- 函数与导数
- 函数的周期性的定义与求解
- + 由周期性求函数的解析式
- 函数周期性的应用
- 判断抽象函数的周期性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标平面中,已知点
,
,
,…,
,其中
是正整数,对平面上任一点
,记
为
关于点
的对称点,
为
关于点
的对称点,…,
为
关于点
的对称点.
(1)求向量
的坐标;
(2)当点
在曲线
上移动时,点
的轨迹是函数
的图像,其中
是以3为周期的周期函数,且当
时,
.求以曲线
为图像的函数在
上的解析式;
(3)对任意偶数
,用
表示向量
的坐标.















(1)求向量

(2)当点









(3)对任意偶数



定义在R上的奇函数
满足:函数
的图象关于y轴对称,当
时,
,则下列选项正确的是()




A.![]() | B.![]() |
C.当![]() ![]() | D.![]() ![]() |
设函数
是定义在
上的偶函数,且
对任意的
恒成立,且当
时,
.
(1)求证:
是以2为周期的函数(不需要证明2是
的最小正周期);
(2)对于整数
,当
时,求函数
的解析式;
(3)对于整数
,记
在
有两个不等的实数根},求集合
.






(1)求证:


(2)对于整数



(3)对于整数



