- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- + 函数的奇偶性
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知偶函数
满足:当
时,
,当
时,
.
(Ⅰ)求
表达式;
(Ⅱ)若直线
与函数
的图像恰有两个公共点,求实数
的取值范围;
(Ⅲ)试讨论当实数
满足什么条件时,直线
的图像恰有
个公共点
,且这
个公共点均匀分布在直线
上.(不要求过程)





(Ⅰ)求

(Ⅱ)若直线



(Ⅲ)试讨论当实数






设函数
对任意
,都有
,当
时,
(1)求证:
是奇函数;
(2)试问:在
时
,
是否有最大值?如果有,求出最大值,如果没有,说明理由.
(3)解关于x的不等式





(1)求证:

(2)试问:在



(3)解关于x的不等式

如果函数f(x)是定义在(-3,3)上的奇函数,当0<x<3时,函数 f(x)的图象如图所示,那么不等式f(x)cosx<0的解集是( )


A.![]() ![]() |
B.![]() ![]() |
C.(- 3,- 1)∪(0,1)∪(1,3) |
D.![]() |
设
分别是定义在R上的奇函数和偶函数,当
时,
,且
,则
的解集是()





A.(-3,0)∪(3,+∞) | B.(-3,0)∪(0,3) |
C.(-∞,-3)∪(3,+∞) | D.(-∞,-3)∪(0,3) |