- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- + 函数的奇偶性
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=mx+
,且f(4)=3.
(1)求m的值;
(2)判断f(x)的奇偶性;
(3)判断f(x)在(0,+∞)上的单调性,并应用单调性的定义给予证明.

(1)求m的值;
(2)判断f(x)的奇偶性;
(3)判断f(x)在(0,+∞)上的单调性,并应用单调性的定义给予证明.
已知定义在R上的两函数f(x)=
,g(x)=
(其中π为圆周率,π=3.1415926…),有下列命题:
①f(x)是奇函数,g(x)是偶函数;
②f(x)是R上的增函数,g(x)是R上的减函数;
③f(x)无最大值、最小值,g(x)有最小值,无最大值;
④对任意x∈R,都有f(2x)=2f(x)g(x);
⑤f(x)有零点,g(x)无零点.
其中正确的命题有 (把所有正确命题的序号都填上)


①f(x)是奇函数,g(x)是偶函数;
②f(x)是R上的增函数,g(x)是R上的减函数;
③f(x)无最大值、最小值,g(x)有最小值,无最大值;
④对任意x∈R,都有f(2x)=2f(x)g(x);
⑤f(x)有零点,g(x)无零点.
其中正确的命题有 (把所有正确命题的序号都填上)
函数f(x)=
是( )

A.偶函数,在(0,+∞)是增函数 | B.奇函数,在(0,+∞)是增函数 |
C.偶函数,在(0,+∞)是减函数 | D.奇函数,在(0,+∞)是减函数 |
已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=3,若a,b∈[﹣1,1],a+b≠0时,有
>0成立.
(1)判断f(x)在[﹣1,1]上的单调性,并证明;
(2)解不等式:f(x+
)<f(
);
(3)若当a∈[﹣1,1]时,f(x)≤m2﹣2am+3对所有的x∈[﹣1,1]恒成立,求实数m的取值范围.

(1)判断f(x)在[﹣1,1]上的单调性,并证明;
(2)解不等式:f(x+


(3)若当a∈[﹣1,1]时,f(x)≤m2﹣2am+3对所有的x∈[﹣1,1]恒成立,求实数m的取值范围.