- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- + 函数的奇偶性
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知g(x)是R上的奇函数,当x<0时,g(x)=-ln(1-x),函数

若f(2-x2)>f(x),则实数x的取值范围是( )


若f(2-x2)>f(x),则实数x的取值范围是( )
A.(-∞,1)∪(2,+∞) |
B.(-∞,-2)∪(1,+∞) |
C.(1,2) |
D.(-2,1) |
(2015秋•葫芦岛期末)定义在[﹣2,2]上的偶函数f(x),当x≥0时,f(x)单调递减,若f(1﹣m)<f(m)成立,求m的取值范围 .
(2015秋•葫芦岛期末)已知函数f(x)的定义域为R,且f(x)不为常值函数,有以下命题:
①函数g(x)=f(x)+f(﹣x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2﹣x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对于任意x∈R,都有f(x)+f(2+x)=0,则f(x)的图象的对称轴方程为x=2n+1(n∈Z);
④对于任意的x1,x2∈R,且x1≠x2,若
>0恒成立,则f(x)为R上的增函数,
其中所有正确命题的序号是 .
①函数g(x)=f(x)+f(﹣x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2﹣x)=0,则f(x)是以2为周期的周期函数;
③若f(x)是奇函数,且对于任意x∈R,都有f(x)+f(2+x)=0,则f(x)的图象的对称轴方程为x=2n+1(n∈Z);
④对于任意的x1,x2∈R,且x1≠x2,若

其中所有正确命题的序号是 .