- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- + 函数的奇偶性
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(2015秋•昆明校级期末)定义在R上的函数f(x)满足对任意x,y∈R都有f(x+y)=f(x)+f(y).且x<0时,f(x)<0,f(﹣1)=﹣2
(1)求证:f(x)为奇函数;
(2)试问f(x)在x∈[﹣4,4]上是否有最值?若有,求出最值;若无,说明理由.
(3)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.
(1)求证:f(x)为奇函数;
(2)试问f(x)在x∈[﹣4,4]上是否有最值?若有,求出最值;若无,说明理由.
(3)若f(k•3x)+f(3x﹣9x﹣2)<0对任意x∈R恒成立,求实数k的取值范围.
(2015秋•大连校级期末)定义在R上的偶函数f(x)满足:对任意的x1,x2∈[0,+∞)(x1≠x2),有
<0.则( )

A.![]() |
B.f(0.76)<f(60.5)<f(log0.76) |
C.![]() |
D.![]() |
(2015秋•鞍山校级期末)设f(x)是定义在[﹣3,3]上的偶函数,当0≤x≤3时,f(x)单调递减,若f(1﹣2m)<f(m)成立,求m的取值范围.