- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- + 函数的最值
- 利用函数单调性求最值
- 根据函数的最值求参数
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
在区间
上的最大值为
,最小值为
,记
,
;
(1)求实数
、
的值;
(2)若不等式
对任意
恒成立,求实数
的范围;
(3)对于定义在
上的函数
,设
,
,用任意
将
划分成
个小区间,其中
,若存在一个常数
,使得不等式
恒成立,则称函数
为在
上的有界变差函数,试证明函数
是在
上的有界变差函数,并求出
的最小值;







(1)求实数


(2)若不等式



(3)对于定义在
















已知函数f(x)=x2﹣2x+1+a在区间[1,2]上有最小值﹣1.
(1)求实数a的值;
(2)若关于x的方程f(log2x)+1﹣2k
log2x=0在[2,4]上有解,求实数k的取值范围;
(3)若对任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,求实数m的取值范围.(附:函数g(t)=t
在(0,1)单调递减,在(1,+∞)单调递增.)
(1)求实数a的值;
(2)若关于x的方程f(log2x)+1﹣2k

(3)若对任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,求实数m的取值范围.(附:函数g(t)=t
