- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- + 函数的最值
- 利用函数单调性求最值
- 根据函数的最值求参数
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数
若存在实数
使得对所有
都有
则称
“有界”,设
是增函数,
是周期函数,且对所有
已知
下列命题中真命题是( )









A.若![]() ![]() |
B.若![]() ![]() |
C.若![]() ![]() |
D.若![]() ![]() |
已知函数
,其最小值为
.
求
的表达式;
当
时,是否存在
,使关于t的不等式
有且仅有一个正整数解,若存在,求实数k的取值范围;若不存在,请说明理由.







