- 集合与常用逻辑用语
- 函数与导数
- 定义法判断函数的单调性
- 求函数的单调区间
- + 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)
.

(1)画出函数f(x)的图象,根据图象直接写出f(x)的值域;
(2)根据图象直接写出满足f(x)≥2的所有x的集合;
(3)若f(x)的递减区间为(﹣∞,a),递增区间为(b,+∞),直接写出a的最大值,b的最小值.


(1)画出函数f(x)的图象,根据图象直接写出f(x)的值域;
(2)根据图象直接写出满足f(x)≥2的所有x的集合;
(3)若f(x)的递减区间为(﹣∞,a),递增区间为(b,+∞),直接写出a的最大值,b的最小值.
已知函数
,其中
,且
.
(1)若函数
的图像过点
,且函数
只有一个零点,求函数
的解析式;
(2)在(1)的条件下,若
,函数
在区间
上单调递增,求实数
的取值范围.



(1)若函数




(2)在(1)的条件下,若




设函数
,其中
,若
、
、
是
的三条边长,则下列结论:①对于一切
都有
;②存在
使
、
、
不能构成一个三角形的三边长;③
为钝角三角形,存在
,使
,其中正确的个数为______个















A.3 | B.2 | C.1 | D.0 |
已知a>0,且a≠1,函数f(x)
,满足对任意实数x1≠x2,都有
0成立,则a的取值范围是( )


A.(0,1) | B.(1,+∞) | C.(![]() | D.(1,3] |