- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的图象是自原点出发的一条折线,当
(
)时,该图象是斜率为
的线段,其中常数
且
,数列
由
(
)定义.
(1)若
,求
,
;
(2)求
的表达式及
的解析式(不必求
的定义域);
(3)当
时,求
的定义域,并证明
的图象与
的图象没有横坐标大于1的公共点.









(1)若



(2)求



(3)当




某人从2002年起,每年7月1日到银行新存入a元一年定期,若年利率r保持不变,且每年到期存款自动转为新的一年定期,到2016年7月1日,将所有的存款及利息全部取回,他可以取回的总金额是______.
各项均为正数的数列
的前
项和为
,且对任意正整数
,都有
.
(1)求数列
的通项公式;
(2)如果等比数列
共有2016项,其首项与公比均为2,在数列
的每相邻两项
与
之间插入
个
后,得到一个新的数列
.求数列
中所有项的和;
(3)是否存在实数
,使得存在
,使不等式
成立,若存在,求实数
的范围,若不存在,请说明理由.





(1)求数列

(2)如果等比数列








(3)是否存在实数




设等差数列
的公差
,前
项和为
,且满足
,
(1)试寻找一个等差数列
和一个非负常数
,使得等式
对于任意的正整数
恒成立,并说明你的理由;
(2)对于(1)中的等差数列
和非负常数
,试求
(
)的最大值.






(1)试寻找一个等差数列




(2)对于(1)中的等差数列




已知函数
的定义域为实数集
,及整数
、
;
(1)若函数
,证明
;
(2)若
,且
(其中
为正的常数),试证明:函数
为周期函数;
(3)若
,且当
时,
,记
,求使得
小于1000都成立的最大整数
.




(1)若函数


(2)若




(3)若





