- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- + 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB-BC-CD-DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值____.

已知正方形ABCD和正方形CGEF,且D点在CF边上,M为AE中点,连接MD、MF,
(1)如图1,请直接给出线段MD、MF的数量及位置关系是 ;
(2)如图2,把正方形CGEF绕点C顺时针旋转,则(1)中的结论是否成立?若成立,请证明;若不成立,请给出你的结论并证明;
(3)若将正方形CGEF绕点C顺时针旋转30°时,CF边恰好平分线段AE,请直接写出
的值.
(1)如图1,请直接给出线段MD、MF的数量及位置关系是 ;
(2)如图2,把正方形CGEF绕点C顺时针旋转,则(1)中的结论是否成立?若成立,请证明;若不成立,请给出你的结论并证明;
(3)若将正方形CGEF绕点C顺时针旋转30°时,CF边恰好平分线段AE,请直接写出


如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(1)证明:
.
(2)当M点在何处时,AM+CM的值最小
当M点在何处时,AM+BM+CM的值最小值,并说明理由
(3)当AM+BM+CM的最小值
时,求正方形的边长

(1)证明:

(2)当M点在何处时,AM+CM的值最小
当M点在何处时,AM+BM+CM的值最小值,并说明理由
(3)当AM+BM+CM的最小值

正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM
(2)当AE=1时,求EF的长.
(1)求证:EF=FM
(2)当AE=1时,求EF的长.

定义:角的内部一点到角两边的距离比为1:2,这个点与角的顶点所连线段称为这个角的二分线.如图1,点P为∠AOB内一点,PA⊥OA于点A,PB⊥OB于点B,且PB=2PA,则线段OP是∠AOB的二分线.

(1)图1中,OP为∠AOB的二分线,PB=4,PA=2,且OA+OB=8,求OP的长;
(2)如图2,正方形ABCD中,AB=2,点E是BC中点,证明:DE是∠ADC的二分线;
(3)如图3,四边形ABCD中,AB∥CD,∠ABC=90°,且∠CAB<∠CAD,∠BDC<∠BDA,若AC,BD分别是∠DAB,∠ADC的二分线,证明:四边形ABCD是矩形.

(1)图1中,OP为∠AOB的二分线,PB=4,PA=2,且OA+OB=8,求OP的长;
(2)如图2,正方形ABCD中,AB=2,点E是BC中点,证明:DE是∠ADC的二分线;
(3)如图3,四边形ABCD中,AB∥CD,∠ABC=90°,且∠CAB<∠CAD,∠BDC<∠BDA,若AC,BD分别是∠DAB,∠ADC的二分线,证明:四边形ABCD是矩形.
如图,在等腰直角三角形ABC中,∠C=90°,AB=8
,点O是AB的中点.将一个边长足够大的Rt△DEF的直角顶点E放在点O处,并将其绕点O旋转,始终保持DE与AC边交于点G,EF与BC边交于点H.
(1)当点G在AC边什么位置时,四边形CGOH是正方形.
(2)等腰直角三角ABC的边被Rt△DEF覆盖部分的两条线段CG与CH的长度之和是否会发生变化,如不发生变化,请求出CG与CH之和的值:如发生变化,请说明理由.

(1)当点G在AC边什么位置时,四边形CGOH是正方形.
(2)等腰直角三角ABC的边被Rt△DEF覆盖部分的两条线段CG与CH的长度之和是否会发生变化,如不发生变化,请求出CG与CH之和的值:如发生变化,请说明理由.

如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且
,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②
的周长为
;③
;④
的面积的最大值
.其中正确的结论是____.(填写所有正确结论的序号)







在菱形ABCD中,
的两边分别与AB,BC交于点E,F,与对角线AC交于点G,H,已知
,
.

(1)如图1,当
,
时,
①求证:
;
②求线段GH的长;
(2)如图2,当
绕点D旋转时,线段AG,GH,HC的长度都在变化.设线段
,
,
,试探究p与mn的等量关系,并说明理由.




(1)如图1,当


①求证:

②求线段GH的长;
(2)如图2,当




如图,点P是正方形ABCD的对角线BD延长线上的一点,连接PA,过点P作PE⊥PA交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①PA=PE;②CE=
PD;③BF﹣PD=
BD;④S△PEF=S△ADP,正确的是___(填写所有正确结论的序号)



如图,M、N是正方形ABCD的边CD上的两个动点,满足
,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是______ .

