- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据正方形的性质与判定求角度
- 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- + 根据正方形的性质与判定证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图1,在正方形
中,
是对角线,点
在
上,
是等腰直角三角形,且
,点
是
的中点,连结
与
.

(1)求证:
.
(2)求证:
.
(3)如图2,若等腰直角三角形
绕点
按顺时针旋转
,其他条件不变,请判断
的形状,并证明你的结论.











(1)求证:

(2)求证:

(3)如图2,若等腰直角三角形




(1)如图,正方形
的边
,
分别在正方形
的边
,
上.
填空:
和
的数量关系是
和
的位置关系是 .

(2)把正方形
绕点
旋转到如图位置,(1)中的结论是否成立?若成立,写成证明过程,若不存在,请说明理由.

(3)设正方形
的边长为4,正方形
的边长为
,正方形
绕点
旋转过程中,若
、
、
三点共线,求
的长.(直接写出结果)






填空:





(2)把正方形



(3)设正方形









四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接C
A.![]() (1)如图,求证:矩形DEFG是正方形; (2)若AB=2 ![]() (3)当直线DE与正方形ABCD的某条边所夹锐角是40°时,直接写出∠EFC的度数. |
如图,在正方形ABCD中,AB=6,E为CD上一动点,AE交BD于F,过F作FH⊥AE交BC于点H,过H作HG⊥BD于G,连结AH.在以下四个结论中:①AF=HE;②∠HAE=45°;③FC=2
;④△CEH的周长为12.其中正确的结论有_____.


如图,在正方形
中,
是边
上的一动点(不与点
,
重合),连接
,点
关于直线
的对称点为
,连接
并延长交
于点
,连接
,过点
作
交
的延长线于点
,连接
.

(1)求证:
;
(2)用等式表示线段
与
的数量关系,并证明.
(3)若正方形
的边长为4,取DH的中点M,请直接写出线段BM长的最小值。



















(1)求证:

(2)用等式表示线段


(3)若正方形

如图,已知正方形ABCD中,E、F分别是正方形AD、CD边上的点,且∠EBF=45°,对角线AC交BE,BF于M,N,对于以下结论,正确的是( )①AE+CF=FE②△ABE≌△BCF③AM2+CN2=MN2④△EFD的周长等于2AB


A.①②③ | B.①②④ | C.①③④ | D.①②③④ |
如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=P

A. (1)求证:PE=PD; (2)连接DE,试判断∠PED的度数,并证明你的结论. |

在一次数学课上,张老师出示了一个题目:“如图,▱ABCD的对角线相交于点O,过点O作EF垂直于BD交AB,CD分别于点F,E,连接DF,BE,请根据上述条件,写出一个正确结论.”其中四位同学写出的结论如下:
小青:OE=OF;小何:四边形DFBE是正方形;
小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF,
这四位同学写出的结论中不正确的是( )

小青:OE=OF;小何:四边形DFBE是正方形;
小夏:S四边形AFED=S四边形FBCE;小雨:∠ACE=∠CAF,
这四位同学写出的结论中不正确的是( )

A.小青 | B.小何 | C.小夏 | D.小雨 |
如图,在正方形ABCD中,E为对角线BD上的一点,点F在AD的延长线上,且∠CEF=90°,EF交CD于H,分别过点F,点C作EC和EF的平行线,交于点

A. (1)证明:AE=CE; (2)证明:四边形ECGF是正方形; (3)若正方形ABCD的边长为 ![]() |

如图,在正方形ABCD中,O是对角线AC,BD的交点,过点O作OE⊥OF,分别交AB,BC于点E,F,若AE=4,CF=3,则四边形OEBF的面积为___.
