刷题首页
题库
初中数学
题干
如图,在正方形ABCD中,O是对角线AC,BD的交点,过点O作OE⊥OF,分别交AB,BC于点E,F,若AE=4,CF=3,则四边形OEBF的面积为___.
上一题
下一题
0.99难度 填空题 更新时间:2019-11-03 10:00:44
答案(点此获取答案解析)
同类题1
已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:
;
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
同类题2
请阅读下列材料:
问题:如图,在正方形
和平行四边形
中,点
,
,
在同一条直线上,
是线段
的中点,连接
,
.
探究:当
与
的夹角为多少度时,平行四边形
是正方形?
小聪同学的思路是:首先可以说明四边形
是矩形;然后延长
交
于点
,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.
(1)求证:四边形
是矩形;
(2)
与
的夹角为________度时,四边形
是正方形.
理由:
同类题3
如图,已知四边形ABCD为正方形,AB=
,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
①求证:矩形DEFG是正方形;
②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
同类题4
如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是( )
A.22.5°
B.30°
C.45°
D.67.5°
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明