- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 正方形性质理解
- 根据正方形的性质求角度
- 根据正方形的性质求线段长
- 根据正方形的性质求面积
- + 正方形折叠问题
- 求正方形重叠部分面积
- 根据正方形的性质证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .

如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AG,现在有如下四个结论:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=14.其中结论正确的序号是_____.

如图,正方形ABCD中,AB=2,点E是AB上一点,将正方形沿CE折叠,点B落在正方形内一点B'处,若△AB'D为等腰三角形,则BE的长度为_____.

将正方形ABCD按图所示方式折叠,使A、C两点同时落在对角线BD上的点G处,折痕分别为BE、BF,则∠BEF等于( )


A.45° | B.57.5° | C.60° | D.67.5° |
如图,正方形ABCD中,点E为AB上一动点(不与A、B重合).将△EBC沿CE翻折至△EFC,延长EF交边AD于点G.

(1)连结AF,若AF∥CE.证明:点E为AB的中点;
(2)证明:GF=GD;
(3)若AD=5,设EB=x,GD=y,求y与x的函数关系式.

(1)连结AF,若AF∥CE.证明:点E为AB的中点;
(2)证明:GF=GD;
(3)若AD=5,设EB=x,GD=y,求y与x的函数关系式.