- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- + 菱形的性质
- 利用菱形的性质求角度
- 利用菱形的性质求线段长
- 利用菱形的性质求面积
- 利用菱形的性质证明
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在菱形ABCD中,对角线AC、BD相交于点O,下列结论:①AC⊥BD;②OA=OB;③∠ADB=∠CDB;④△ABC是等边三角形,其中一定成立的是()


A.①② | B.③④ | C.②③ | D.①③ |
如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是( )


A.108° | B.72° | C.90° | D.100° |
斜边为2的两个全等30°的直角三角板,如图1所示拼成一个矩形,将一个三角板保持不动,另一个三角板沿斜边向右下方向滑动,当四边形ABCD是菱形时,如图2,则平移距离AE的长为( )


A.1 | B.![]() | C.![]() | D.2 |
如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=2
,AC=2,求四边形AODE的周长.
(1)求证:四边形AODE是矩形;
(2)若AB=2

