- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- 平行四边形
- + 特殊的平行四边形
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图①,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°
,则有结论EF=BE+FD成立;【小题1】如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明;若不成立,请说明理由;
【小题2】若将(1)中的条件改为:在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.


,则有结论EF=BE+FD成立;【小题1】如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明;若不成立,请说明理由;
【小题2】若将(1)中的条件改为:在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.



如图,在矩形ABCD中,E.F分别是边AD.BC的中点,点G、H在DC边上,且GH=DC.若AB=15,BC=16,则图中阴影部分面积是()

A.40 B.60 C.80 D.70

A.40 B.60 C.80 D.70
如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为E,点F在BD上,连接AF、EF.
【小题1】求证:DA=DE;
【小题2】如果AF∥CD,求证:四边形ADEF是菱形.
【小题1】求证:DA=DE;
【小题2】如果AF∥CD,求证:四边形ADEF是菱形.

如图.在△ABC中.D是AB的中点.E是CD的中点.过点C作CF∥AB交AE的延长线于点F.连结BF.
(1)求证:DB=CF;
(2)在△ABC中添加一个条件: ,使四边形BDCF为 (填:矩形或菱形).
(1)求证:DB=CF;
(2)在△ABC中添加一个条件: ,使四边形BDCF为 (填:矩形或菱形).

如图,在矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.

(1)求证:△BOE≌△DOF;
(2)当EF与AC满足____▲_____关系时,以A、E、C、F为顶点的四边形是菱形.

(1)求证:△BOE≌△DOF;
(2)当EF与AC满足____▲_____关系时,以A、E、C、F为顶点的四边形是菱形.
已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()
A.AC=BD | B. BC=CD | C.AD="BC" | D.AB=CD |
如图,甲,乙,丙,丁四个长方形拼成正方形EFGH,中间阴影为正方形,已知,甲、乙、丙、丁四个长方形面
0分积的和是32cm²,四边形ABCD的面积是20cm²。问甲、乙、丙、丁四个长方形周长的总和是:

