如图,在□ABCD中,对角线AC、BD相交于点O,AF⊥BD,CE⊥BD,垂足为F、E,请画图连接AE,CF,并证明四边形AFCE是平行四边形.

如图,在▱ABCD中,AD>AB,AM、BN、CP、DQ为四个内角的角平分线,P、为AD边上两点,其中AM与DQ相交于E,BN与CP相交于F,AM与BN相交于G,CP与DQ相交于H.

(1)求证:四边形EHFG是矩形.
(2)▱ABCD满足 时,四边形EHFG为正方形;▱ABCD满足 时,F点落在AD边上.(与点P、点N重合)
(3)探究矩形EHFG的对角线长度与▱ABCD的边长之间的数量关系,并证明.

(1)求证:四边形EHFG是矩形.
(2)▱ABCD满足 时,四边形EHFG为正方形;▱ABCD满足 时,F点落在AD边上.(与点P、点N重合)
(3)探究矩形EHFG的对角线长度与▱ABCD的边长之间的数量关系,并证明.
如图AM∥BN,C是BN上一点, BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点
A.![]() (1)求证:△ADO≌△CBO. (2)求证:四边形ABCD是菱形. (3)若DE = AB = 2,求菱形ABCD的面积. |
如图,在
中,
,对角线
、
相交于点
,将直线
绕点
顺时针旋转一个角度
(
),分别交线段
、
于点
、
,已知
,
,连接
.



(1)如图①,在旋转的过程中,请写出线段
与
的数量关系,并证明;
(2)如图②,当
时,请写出线段
与
的数量关系,并证明;
(3)如图③,当
时,求
的面积.



















(1)如图①,在旋转的过程中,请写出线段


(2)如图②,当



(3)如图③,当


综合与探究:
操作发现:如图1,在
中,
,以点
为中心,把
顺时针旋转
,得到
;再以点
为中心,把
逆时针旋转
,得到
.连接
.则
与
的位置关系为平行;

探究证明:如图2,当
是锐角三角形,
时,将
按照(1)中的方式,以点
为中心,把
顺时针旋转
,得到
;再以点
为中心,把
逆时针旋转
,得到
.连接
,

①探究
与
的位置关系,写出你的探究结论,并加以证明;
②探究
与
的位置关系,写出你的探究结论,并加以证明.





























①探究


②探究

