刷题首页
题库
初中数学
题干
如图,在
中,
,对角线
、
相交于点
,将直线
绕点
顺时针旋转一个角度
(
),分别交线段
、
于点
、
,已知
,
,连接
.
(1)如图①,在旋转的过程中,请写出线段
与
的数量关系,并证明;
(2)如图②,当
时,请写出线段
与
的数量关系,并证明;
(3)如图③,当
时,求
的面积.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-16 10:42:32
答案(点此获取答案解析)
同类题1
综合与探究:
操作发现:如图1,在
中,
,以点
为中心,把
顺时针旋转
,得到
;再以点
为中心,把
逆时针旋转
,得到
.连接
.则
与
的位置关系为平行;
探究证明:如图2,当
是锐角三角形,
时,将
按照(1)中的方式,以点
为中心,把
顺时针旋转
,得到
;再以点
为中心,把
逆时针旋转
,得到
.连接
,
①探究
与
的位置关系,写出你的探究结论,并加以证明;
②探究
与
的位置关系,写出你的探究结论,并加以证明.
同类题2
△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接B
A.
(1) 如图1,当点D在线段BC上时:
①求证:△AEB≌△ADC;②求证:四边形BCGE是平行四边形;
(2)如图2,当点D在BC的延长线上,且CD=BC时,试判断四边形BCGE是什么特殊的四边形?并说明理由.
同类题3
如图AM∥BN,C是BN上一点, BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点
A.
(1)求证:△ADO≌△CBO.
(2)求证:四边形ABCD是菱形.
(3)若DE = AB = 2,求菱形ABCD的面积.
同类题4
已知
中,
,点
是斜边
上的中点,过点
作
边上的垂线
,垂足为点
,连接
,过点
作
与
的延长线相交于点
.
(1)找出图中与
相等的所有线段.
(2)若
,
,求四边形
的面积.
同类题5
如图,在▱ABCD中,E是CD的中点,AE的延长线与BC的延长线相交于点F.
求证:BC=CF.
相关知识点
图形的性质
四边形
平行四边形
平行四边形的判定与性质综合
利用平行四边形性质和判定证明